1. Express the area A of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle as a function of the length h of the hypotenuse.
2. A tourist walks n km at $4 \mathrm{~km} / \mathrm{h}$ and then travels 2 n km at $36 \mathrm{~km} / \mathrm{h}$ by bus. Express the total traveling time t (in hours) as a function of n.
3. A store owner bought n dozen toy boats at a cost of $\$ 3.00$ per dozen, and sold them at $\$.75$ apiece. Express the profit P (in dollars) as a function of n .
4. The height of a cylinder is twice the diameter. Express the total surface area A as a function of the height h.
5. A light 3 m above the ground causes a boy 1.8 m tall to cast a shadow s meters long measured along the ground. Express s as a function of d , the boy's distance in meters from the light.
6. A box with a square base has a surface are (including the top) of $3 \mathrm{~m}^{2}$. Express the volume V of the box as a function of the width w of the base.
7. A stone is thrown into a lake, and t seconds after the splash the diameter of the circle ripples is t meters.
a. Express the circumference C of this circle as a function of t .
b. Express the area A of this circle as a function of t .
8. A box with a square base and no top has a volume of $8 \mathrm{~m}^{3}$. The material for the base costs $\$ 8$ per square meter, and the material for the sides cost $\$ 6$ per square meter.
a. Express the cost C of the materials used to make the box as a function of the width w of the base.
b. Use a graphing calculator to find the minimum cost.
9. At 2:00 P.M. bike A is 4 km north of point C and traveling south at $16 \mathrm{~km} / \mathrm{h}$. At the same time, bike B is 2 km east of C and traveling east at $12 \mathrm{~km} / \mathrm{h}$.
a. Show that t hours after 2:00 P.M. the distance between the bikes is:

$$
\sqrt{400 t^{2}-80 t+20}
$$

b. At what time is the distance between the two bikes the least?
c. What is the distance between the bikes when they are closest?
10. Water is flowing at a rate of $5 \mathrm{~m}^{3} / \mathrm{s}$ into a conical tank.
a. Find the volume V of the water as a function of the water level h .
b. Find h as a function of the time t during which water has been flowing into the tank.
11. $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is an arbitrary point on the line $2 x+y=10$.
a. Express the distance d from the origin to P as a function of the x -coordinate of P .

b. What are the domain and range of this function.
12. Rectangle $A B C D$ has vertices C and D on the x-axis and vertices A and B on the part of the parabola $y=9-x^{2}$ that is above the x-axis.
a. Express the perimeter P of the rectangle as a function of the x -coordinate of A .
b. What is the domain of the perimeter function?
c. For what value of x is the perimeter a maximum?
13. From raft 50 m offshore, a lifeguard wants to swim to shore and run to a snack bar 100 m down the beach.
a. If the lifeguard swims at $1 \mathrm{~m} / \mathrm{s}$ and runs $3 \mathrm{~m} / \mathrm{s}$, express the total swimming and running time t as a function of the distance x.
b. Use a graphing calculator to find the minimum time.

