Unit 6 Vectors

Law of Sines - oblique triangles

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

1) Two angles and any side (AAS or ASA)
2) Two sides and an angle opposite one of them.

Find b and c .

Find angle A \& B

Ambiguous case: Finding the remaining sides and angles.

Ex: $\mathrm{a}=15, \mathrm{~b}=25$, and $\mathrm{A}=85^{\circ}$. Find the remaining angles and sides.

Area of Oblique Triangles:

Area $=1 / 2 \mathbf{a b} \sin C=1 / 2 b c \sin A=1 / 2 \mathbf{a c} \sin B$

Ex: Find the area of the triangle with the indicated values

$$
\mathrm{A}=105^{\circ}, \mathrm{c}=8, \text { and } \mathrm{b}=12
$$

Law of Cosines:

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

1) Three sides (SSS)
2) Two sides and an angle in between (SAS)

Ex: $\mathrm{a}=6.2, \mathrm{~b}=12.4$, and $\mathrm{c}=8.1 \quad$ Ex: $\angle \mathrm{B}=55^{\circ}, \mathrm{b}=13$, and $\mathrm{a}=19$

Ex:

Show Proof:

Heron's Formula:

Find the area of the triangle.

30

Vectors in the Plane:

Many quantities such as length, mass, volume can be specified by a single value. (scalars)

Others such as velocity, force, torque, and displacement require a magnitude and a direction. (vectors)

Geometrically a vector is a directed line segment with a certain length and direction.

Vector - the set of all equivalent line segments.
Ex: directed line segment JG has an initial point J (tail) and a terminal point
G(head).

$$
\text { Length of JG = \|JG } \|
$$

vector \mathbf{w} is the set of all vectors that are equivalent to JG

Ex: Let \mathbf{u} be a directed line segment from $(0,0)$ to $(3,2)$ and v be directed line segment from $(1,2)$ to $(4,4)$. Show $\mathbf{u}=\mathbf{v}$.

Find the length:
Find the slope:

Component Form of a Vector:

A vector in standard position is usually the most convenient way to write the vector.

Standard Position - initial point (tail) is (0,0).
A vector in standard position is denoted by its' terminal point

$$
\mathrm{v}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle \text { component form of a vector }
$$

To put into component form:
If the initial point is $\left\langle\mathrm{p}_{1}, \mathrm{p}_{2}\right\rangle$ and the terminal point is $\left\langle\mathrm{q}_{1}, \mathrm{q}_{2}\right\rangle$ then:

$$
\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle=\left\langle\mathrm{q}_{1}-\mathrm{p}_{1,} \mathrm{q}_{2}-\mathrm{p}_{2}\right\rangle
$$

length or magnitude of v is: $\sqrt{\left(\mathrm{q}_{1}-\mathrm{p}_{1}\right)^{2}+\left(\mathrm{q}_{2}-\mathrm{p}_{2}\right)^{2}}=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}}$

Zero vector has both initial and terminal points at (0,0).

Ex: Finding component form and length of v with initial point (3,-6) and terminal point ($-4,2$).

Vector Operations:

Basic Operations

1) scalar multiplication
2) vector addition

Scalar Multiplication:

If you multiply a constant k times a vector, the product is $|\mathrm{k}|$ times as long as \mathbf{v}. If k is positive, it has the same direction and if k is negative, it goes in the opposite direction.
Geometric representation of scalar multiplication:

Algebraic: $\mathrm{kv}=\mathrm{k}\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle=\left\langle\mathrm{kv}_{1}, \mathrm{kv}_{2}\right\rangle$

$$
\text { Ex: let } \mathbf{v}=\langle-7,8\rangle \text {, find } 2 \mathbf{v}:
$$

Ex: let $\mathbf{u}=\langle-3,4>$ find $-\mathbf{u}$

Vector Addition:

Geometric:

Put tail of \mathbf{v} to head of \mathbf{u}
Where is $\mathbf{u}+\mathbf{v}$?
Initial of \mathbf{u} drawn to head of \mathbf{v}.
Addition is commutative, associative, and distributive
Algebraically: $\mathbf{u}=\langle 3,-6\rangle \quad \mathbf{v}=\langle-5,2\rangle$

$$
\mathbf{u}+\mathbf{v}=
$$

Vector Subtraction $\mathbf{u}-\mathbf{v}$. Think of this as $\mathbf{u}+(-\mathbf{v})$

Geometric:

Algebraic $\mathbf{u}-\mathbf{v}=\left\langle\mathrm{u}_{1}-\mathrm{v}_{1}, \mathbf{u}_{2}-\mathrm{v}_{2}\right\rangle$

Ex: Let $\mathbf{m}=\langle-1,5\rangle, \mathbf{n}=\langle 4,-2\rangle$

1. Find $-3 \mathbf{m}$
2. Find $\mathbf{n}-\mathbf{m}$
3. Find $-2 \mathbf{m}+\mathbf{n}$

Unit Vector:

The unit vector \mathbf{u} has length 1 and the same direction as vector \mathbf{v}.

To find: divide \mathbf{v} by its' length $\frac{v}{\|v\|}$.

Ex: $\mathbf{v}=\langle-7,8\rangle$
Unit vector:

Standard Unit Vectors $\langle 1,0>$ and $\langle 0,1\rangle$
We always use $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$

$$
\begin{aligned}
\mathrm{v} & =\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle \\
& =\mathrm{v}_{1}\langle 1,0\rangle+\mathrm{v}_{2}\langle 0,1\rangle \\
& =\mathrm{v}_{1} \mathbf{i}+\mathrm{v}_{2} \mathbf{j}
\end{aligned}
$$

$\mathrm{v}=\mathrm{v}_{1} \mathbf{i}+\mathrm{v}_{2} \mathbf{j}$ is called a linear combination.

To write Linear Combination:

1) Write the vector in component form
2) Use \mathbf{i} and \mathbf{j} to write the equation

Ex: $\mathbf{v}=$ vector from $(1,4)$ to $(-3,6)$, write as a linear combination
$E x: \mathbf{u}=-2 \mathbf{i}-6 \mathbf{j}$ and $v=-4 \mathbf{i}+2 \mathbf{j}$
Find $3 \mathbf{u}+2 \mathbf{v}$:

You could solve by converting back to component form but it is not necessary.

Ex: unit vector $\mathbf{w}=-5 \mathbf{i}-3 \mathbf{j}$

Show $\mathbf{u}+\mathbf{v}$ graphically with a vector from $(1,3)$ to $(-3,-4)$ and a vector from $(2,-2)$ to $(4,-5)$. Move to standard position first.

Algebraically:

Direction Angles:

If u is a unit vector and θ is the angle (counter-clockwise) from the x axis, then $\mathbf{u}=<\cos \theta, \sin \theta>$ because its' terminal point is on the unit circle.

$$
\begin{aligned}
& \theta=\text { direction angle } \\
& \text { unit vector }=\langle\cos \theta, \sin \theta\rangle \\
& \frac{v}{\|v\|}=\langle\cos \theta, \sin \theta> \\
& \mathbf{v}=\|\mathrm{v}\|<\cos \theta, \sin \theta>\text { or } \mathbf{v}=\|\mathrm{v}\|[(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}]
\end{aligned}
$$

To find Directional Angles:

1) Put the vector in compound form or as a linear combination
2) Find $\tan \theta$
3) Find θ

Ex: Find the direction angle for:
A: $\mathbf{v}=6 \mathbf{i}+6 \mathbf{j}$ or $\langle 6,6\rangle$
$B: \mathbf{v}=2 \mathbf{i}-5 \mathbf{j}$ or $\langle 2,-5\rangle$

Dot Product - different from vector addition and scalar multiplication because in those you get a vector answer \& in this you get a scalar answer.

Definition: Dot product of $\mathbf{u}=\left\langle\mathrm{u}_{1}, \mathrm{u}_{2}\right\rangle$ and $\mathbf{v}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle$

$$
\mathbf{u} \cdot \mathbf{v}=\mathrm{u}_{1} \mathrm{v}_{1}+\mathrm{u}_{2} \mathrm{v}_{2}
$$

Properties:

1) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2) $0 \cdot v=0$
3) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
4) $\mathbf{v} \cdot \mathbf{v}=\|v\|^{2}$
5) $\mathrm{k}(\mathbf{u} \cdot \mathbf{v})=\mathrm{ku} \cdot \mathbf{v}=\mathbf{u} \cdot \mathrm{kv}$

Ex: $<6,8>\cdot<1,2>=$
Ex: $\langle 3,-5>\bullet<3,2>=$
Ex: $<0,4>\cdot<2,1\rangle=$

Using Properties

Ex: Let $\mathbf{u}=\langle 1,2\rangle, \mathbf{v}=\langle 3,4\rangle$ and $\mathbf{w}=\langle-1,2\rangle$
Find $\mathbf{u}(\mathbf{v} \cdot \mathbf{w})=$

Find $\mathbf{u} \cdot 3 \mathbf{w}=$

Dot Product \& Length
The dot product of \mathbf{u} with itself is 7 . What is the magnitude of \mathbf{u} ?

The Angle Between two non-zero vectors:

If θ is the angle between 2 non-zero vectors when $\mathbf{u} \& \mathbf{v}$ are in standard form $0 \leq \theta \leq \pi$:

$$
\cos \theta=\frac{u \bullet v}{\|u\|\|v\|}
$$

Find the angle between $\mathbf{u}=\langle 3,2>$ and $\mathbf{v}=\langle 1,4>$

Note: can also be rewritten as $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathrm{v}\| \cos \theta$

Orthogonal Vectors:

Definition: vectors are orthogonal if their dot products are 0 .
If $\mathbf{u} \cdot \mathbf{v}=\mathbf{0}$, then \mathbf{u} and \mathbf{v} are orthogonal.
Orthogonal basically means perpendicular.
Ex: Show that vectors $\mathbf{u}=<2,-3>$ and $\mathbf{v}=<6,4>$ are orthogonal.

Ex: Find the measure of the angle ABC where $\mathrm{A}=(4,3), \mathrm{B}=(1,-1)$ and

$$
C=(6,-4) .
$$

Proof of Properties:

Prove $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$

Prove $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

Prove $(\mathbf{r u}) \cdot \mathbf{v}=\mathrm{r}(\mathbf{u} \cdot \mathbf{v})$

DeMoivre's Theorem:

Graphing Complex Numbers

Absolute value of a complex number: $\mathrm{a}+\mathrm{b} i=|\mathrm{a}+\mathrm{b} i|=\sqrt{a^{2}+b^{2}}$
Distance between $(0,0)$ and (a, b).
Ex: $\mathrm{z}=-3+4 i$; find the absolute value

Polar Form of a Complex Number:

Polar form of $\mathrm{z}=\mathrm{a}+\mathrm{b} i$ is $\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$
Where $\mathrm{a}=\mathrm{r} \cos \theta$
$\mathrm{b}=\mathrm{r} \sin \theta$
$\mathrm{r}=\sqrt{a^{2}+b^{2}} \quad \mathrm{r}=$ modulus
$\tan \theta=\frac{b}{a} \quad \theta=$ argument

Ex: Write $\mathrm{z}=-3+\sqrt{3} i$ in trig form (polar form)

1. Graph
2) Find r
3) Find θ
4) Polar Form:

Complex Form of a Polar:

Ex: Write $\mathrm{z}=6\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)$ in standard form

Multiplication and Division of Complex Numbers

$$
\text { Let } \mathrm{z}_{1}=\mathrm{r}_{1}(\cos \theta+i \sin \theta) \text { and } \mathrm{z}_{2}=\mathrm{r}_{2}(\cos \theta+i \sin \theta)
$$

Product $\mathrm{Z}_{1} \cdot \mathrm{Z}_{2}=\mathrm{r}_{1} \mathrm{r}_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$

Quotient $\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$

Ex: Find the product $\mathrm{z}_{1} \mathrm{z}_{2}$ if $\mathrm{z}_{1}=3\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

$$
\mathrm{z}_{2}=4\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)
$$

Ex: Find the quotient $\frac{z_{1}}{z_{2}}=\frac{3}{4}\left(\cos \left(\frac{2 \pi}{3}-\frac{7 \pi}{6}\right)+i \sin \left(\frac{2 \pi}{3}-\frac{7 \pi}{6}\right)\right)$

Ex: if $\mathrm{z}_{1}=3\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and $\mathrm{z}_{2}=4\left(\cos \frac{7 \pi}{6}+i \sin \frac{7 \pi}{6}\right)$, find $\mathrm{Z}_{1} \mathrm{Z}_{2}$ and $\frac{z_{1}}{z_{2}}$.

Powers of Complex Numbers:

DeMoivre's Theorem \rightarrow if $\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$ is a complex number and n is a positive integer, then $\mathrm{z}^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}(\cos \mathrm{n} \theta+i \sin \mathrm{n} \theta)$

Ex: Find $(-2-2 i \sqrt{3})^{8}$

1. Convert to trig form (polar)
2. Use DeMoivre's Theorem

Ex: Find $(-4-2 i)^{6}$

Ex: $\frac{5}{2+3 i}$
Ex: $(5+i)(3-2 i)$

Definition of $\mathbf{n}^{\text {th }}$ root of a Complex Number.

$\mathrm{u}=\mathrm{a}+\mathrm{b} i$ is the $\mathrm{n}^{\text {th }}$ root of a complex number z if $\mathrm{z}=\mathrm{u}^{\mathrm{n}}=(\mathrm{a}+\mathrm{b} i)^{\mathrm{n}}$.

$$
\sqrt[n]{z}=a+b i
$$

For a positive integer n , the complex number $\mathrm{z}=\mathrm{r}(\cos \theta+i \sin \theta)$ has exactly n distinct $\mathrm{n}^{\text {th }}$ roots given by:

$$
\sqrt[n]{z}=\sqrt[n]{r}\left(\cos \frac{\theta+2 \pi k}{n}+i \sin \frac{\theta+2 \pi k}{n}\right) \text { where } \mathrm{k}=0,1,2,3 \ldots \mathrm{n}-1
$$

Ex: Find the cube root of $-8 i$.

