Unit 6 Vectors

Law of Sines – oblique triangles

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

1) Two angles and any side (AAS or ASA)

2) Two sides and an angle opposite one of them.

Ex: a = 15, b = 25, and $A = 85^{\circ}$. Find the remaining angles and sides.

Area of Oblique Triangles:

Area = $\frac{1}{2}$ ab sin C = $\frac{1}{2}$ bc sin A = $\frac{1}{2}$ ac sin B

Ex: Find the area of the triangle with the indicated values

 $A = 105^{\circ}$, c = 8, and b = 12

Law of Cosines:

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

Three sides (SSS)
Two sides and an angle in between (SAS)

Ex: a = 6.2, b = 12.4, and c = 8.1 Ex: $\angle B = 55^{\circ}$, b = 13, and a = 19

Show Proof:

Vectors in the Plane:

Many quantities such as length, mass, volume can be specified by a single value. (scalars)

Others such as velocity, force, torque, and displacement require a magnitude and a direction. (vectors)

Geometrically a **vector** is a directed line segment with a certain length and direction.

Vector – the set of all equivalent line segments.

Ex: directed line segment JG has an initial point J(tail) and a terminal point G(head).

Length of JG = ||JG||

vector \mathbf{w} is the set of all vectors that are equivalent to JG

Must have same slope & length same direction Ex: Let **u** be a directed line segment from (0,0) to (3,2) and v be directed line segment from (1,2) to (4,4). Show $\mathbf{u} = \mathbf{v}$.

Find the length:

Find the slope:

Component Form of a Vector:

A vector in <u>standard position</u> is usually the most convenient way to write the vector.

Standard Position – initial point (tail) is (0,0). A vector in standard position is denoted by its' terminal point

 $v = \langle v_1, v_2 \rangle$ component form of a vector

To put into component form:

If the initial point is $\langle p_1, p_2 \rangle$ and the terminal point is $\langle q_1, q_2 \rangle$ then:

 $< v_1, \, v_2 > \, = \, < q_1 - p_{1,} \, q_2 - p_2 > \,$

length or **magnitude** of v is: $\sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \sqrt{v_1^2 + v_2^2}$

Zero vector has both initial and terminal points at (0,0).

Ex: Finding component form and length of v with initial point (3,-6) and terminal point (-4,2).

Vector Operations:

Basic Operations	1) scalar multiplication
	2) vector addition

Scalar Multiplication:

If you multiply a constant k times a vector, the product is |k| times as long as **v**. If k is positive, it has the same direction and if k is negative, it goes in the opposite direction.

Geometric representation of scalar multiplication:

Algebraic: $kv = k < v_1, v_2 > = < kv_1, kv_2 >$

Ex: let **v** = < -7, 8 >, find 2**v**: Ex: let **u** = < -3, 4 > find -**u**

Vector Addition:

Geometric:

Put tail of \mathbf{v} to head of \mathbf{u} Where is $\mathbf{u} + \mathbf{v}$? Initial of \mathbf{u} drawn to head of \mathbf{v} . Addition is commutative, associative, and distributive

Algebraically: u = < 3, -6 > v = < -5, 2 >

 $\mathbf{u} + \mathbf{v} =$

Vector Subtraction $\mathbf{u} - \mathbf{v}$. Think of this as $\mathbf{u} + (-\mathbf{v})$

Geometric:

Algebraic $\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$

- Ex: Let $\mathbf{m} = \langle -1, 5 \rangle$, $\mathbf{n} = \langle 4, -2 \rangle$
 - 1. Find -3**m** 2. Find **n** – **m**
 - 3. Find -2**m** + **n**

Unit Vector:

The unit vector **u** has length 1 and the same direction as vector **v**.

To find: divide **v** by its' length $\frac{v}{\|v\|}$.

Ex: **v** = < -7, 8 >

Unit vector:

Standard Unit Vectors < 1, 0 > and < 0, 1 > We always use $\mathbf{i} = < 1, 0 >$ and $\mathbf{j} = < 0, 1 >$

 $\mathbf{v} = \mathbf{v}_1 \mathbf{i} + \mathbf{v}_2 \mathbf{j}$ is called a <u>linear combination</u>.

To write Linear Combination:

- 1) Write the vector in component form
- 2) Use **i** and **j** to write the equation

Ex: \mathbf{v} = vector from (1, 4) to (-3, 6), write as a linear combination

Ex: u = -2i - 6j and v = -4i + 2j

Find 3**u** + 2**v**:

You could solve by converting back to component form but it is not necessary.

Ex: unit vector $\mathbf{w} = -5\mathbf{i} - 3\mathbf{j}$

Show $\mathbf{u} + \mathbf{v}$ graphically with a vector from (1,3) to (-3,-4) and a vector from (2,-2) to (4,-5). Move to standard position first.

Algebraically:

Direction Angles:

If u is a unit vector and θ is the angle (counter-clockwise) from the x-axis, then $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ because its' terminal point is on the unit circle.

 $\theta = \text{direction angle}$ unit vector = < cos θ , sin θ > $\frac{v}{\|v\|} = < \cos \theta$, sin θ > $\mathbf{v} = \|\mathbf{v}\| < \cos \theta$, sin θ > or $\mathbf{v} = \|\mathbf{v}\| [(\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}]$

To find Directional Angles:

1) Put the vector in compound form or as a linear combination

- 2) Find tan θ
- 3) Find θ

Ex: Find the direction angle for: A: $\mathbf{v} = 6\mathbf{i} + 6\mathbf{j}$ or < 6, 6 >

B: v = 2i - 5j or < 2, -5 >

Dot Product – different from vector addition and scalar multiplication because in those you get a vector answer & in this you get a scalar answer.

Definition: Dot product of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$

$$\mathbf{u} \bullet \mathbf{v} = u_1 v_1 + u_2 v_2$$

Properties:

1) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ 2) $0 \cdot \mathbf{v} = 0$ 3) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 4) $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$ 5) $\mathbf{k}(\mathbf{u} \cdot \mathbf{v}) = \mathbf{k}\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{k}\mathbf{v}$

Ex: $< 6,8 > \bullet < 1,2 > =$ Ex: $< 3,-5 > \bullet < 3,2 > =$ Ex: $< 0,4 > \bullet < 2,1 > =$ **Using Properties**

Ex: Let $\mathbf{u} = \langle 1, 2 \rangle$, $\mathbf{v} = \langle 3, 4 \rangle$ and $\mathbf{w} = \langle -1, 2 \rangle$

Find $\mathbf{u}(\mathbf{v} \cdot \mathbf{w}) =$

Find $\mathbf{u} \cdot 3\mathbf{w} =$

Dot Product & Length

The dot product of **u** with itself is 7. What is the magnitude of **u**?

The Angle Between two non-zero vectors:

If θ is the angle between 2 non-zero vectors when **u** & **v** are in standard form $0 \le \theta \le \pi$:

$$\cos \theta = \frac{u \bullet v}{\|u\| \|v\|}$$

Find the angle between $\mathbf{u} = \langle 3, 2 \rangle$ and $\mathbf{v} = \langle 1, 4 \rangle$

Note: can also be rewritten as $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$

Orthogonal Vectors:

Definition: vectors are orthogonal if their dot products are 0.

If $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$, then \mathbf{u} and \mathbf{v} are orthogonal. Orthogonal basically means perpendicular.

Ex: Show that vectors $\mathbf{u} = \langle 2, -3 \rangle$ and $\mathbf{v} = \langle 6, 4 \rangle$ are orthogonal.

Ex: Find the measure of the angle ABC where A = (4, 3), B = (1, -1) and C = (6, -4).

Proof of Properties:

Prove $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$

Prove $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

Prove $(\mathbf{r}\mathbf{u}) \cdot \mathbf{v} = \mathbf{r}(\mathbf{u} \cdot \mathbf{v})$

DeMoivre's Theorem:

Graphing Complex Numbers

Absolute value of a complex number: $a + bi = |a + bi| = \sqrt{a^2 + b^2}$ Distance between (0,0) and (a,b).

Ex: z = -3 + 4i; find the absolute value

Polar Form of a Complex Number:

Polar form of z = a + bi is $z = r(\cos \theta + i\sin \theta)$ Where $a = r\cos \theta$ $b = r\sin \theta$ $r = \sqrt{a^2 + b^2}$ r = modulus $\tan \theta = \frac{b}{a}$ $\theta = argument$

Ex: Write $z = -3 + \sqrt{3}i$ in trig form (polar form)

1. Graph 2) Find r 3) Find θ

4) Polar Form:

Complex Form of a Polar:

Ex: Write $z = 6(\cos \frac{5\pi}{3} + i\sin \frac{5\pi}{3})$ in standard form

Multiplication and Division of Complex Numbers

Let
$$z_1 = r_1(\cos \theta + i \sin \theta)$$
 and $z_2 = r_2(\cos \theta + i \sin \theta)$

Product $z_1 \bullet z_2 = r_1 r_2 (\cos (\theta_1 + \theta_2) + i \sin (\theta_1 + \theta_2))$

Quotient $\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$

Ex: Find the product $z_1 z_2$ if $z_1 = 3(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3})$ $z_2 = 4(\cos \frac{7\pi}{6} + i\sin \frac{7\pi}{6})$

Ex: Find the quotient
$$\frac{z_1}{z_2} = \frac{3}{4} \left(\cos\left(\frac{2\pi}{3} - \frac{7\pi}{6}\right) + i\sin\left(\frac{2\pi}{3} - \frac{7\pi}{6}\right) \right)$$

Ex: if
$$z_1 = 3(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3})$$
 and $z_2 = 4(\cos \frac{7\pi}{6} + i\sin \frac{7\pi}{6})$,
find $z_1 z_2$ and $\frac{z_1}{z_2}$.

Powers of Complex Numbers:

DeMoivre's Theorem \rightarrow if $z = r(\cos \theta + i\sin \theta)$ is a complex number and n is a positive integer, then $z^n = r^n(\cos n\theta + i\sin n\theta)$

Ex: Find $(-2 - 2i\sqrt{3})^8$

1. Convert to trig form (polar)

2. Use DeMoivre's Theorem

Ex: Find $(-4 - 2i)^6$

Ex:
$$\frac{5}{2+3i}$$
 Ex: $(5+i)(3-2i)$

Definition of nth root of a Complex Number.

u = a + bi is the nth root of a complex number z if $z = u^n = (a + bi)^n$.

$$\sqrt[n]{z} = a + bi$$

For a positive integer n, the complex number $z = r(\cos \theta + i\sin \theta)$ has exactly n distinct nth roots given by:

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\theta + 2\pi k}{n} + i \sin \frac{\theta + 2\pi k}{n} \right) \text{ where } k = 0, 1, 2, 3 \dots n - 1$$

Ex: Find the cube root of -8*i*.