Unit 6 Vectors

Law of Sines – oblique triangles
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1) Two angles and any side (AAS or ASA)

2) Two sides and an angle opposite one of them.
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Ambiguous case: Finding the remaining sides and angles.



Ex:                                                                                  Ex: 


Ex:  a = 15, b = 25, and A = 85
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. Find the remaining angles and sides.
Area of Oblique Triangles:




Area = ½ ab sin C = ½ bc sin A = ½ ac sin B

Ex: Find the area of the triangle with the indicated values 

       A = 105
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, c = 8, and b = 12
Law of Cosines:
a
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1) Three sides (SSS)

2) Two sides and an angle in between (SAS)

Ex: a = 6.2, b = 12.4, and c = 8.1
       Ex: 
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B = 55
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, b = 13, and a = 19



Ex:


Show Proof:


Heron’s Formula:  

Find the area of the triangle.

                     
Vectors in the Plane:

Many quantities such as length, mass, volume can be specified by a 


single value. (scalars)


Others such as velocity, force, torque, and displacement require a

          magnitude and a direction. (vectors)

Geometrically a vector is a directed line segment with a certain length and direction.

Vector – the set of all equivalent line segments.

Ex: directed line segment JG has an initial point J(tail) and a terminal point 

      G(head).



Length of JG = ||JG||


vector w is the set of all vectors that are equivalent to JG










Must have same 

                                                                                             slope & length

                                                                                             same direction
Ex: Let u be a directed line segment from (0,0) to (3,2) and v be directed 

      line segment from (1,2) to (4,4). Show u = v.

Find the length:

Find the slope:

Component Form of a Vector:
A vector in standard position is usually the most convenient way to write the vector.

Standard Position – initial point (tail) is (0,0).

A vector in standard position is denoted by its’ terminal point




v = < v1, v2 >  component form of a vector

To put into component form:

If the initial point is < p1, p2 >   and the terminal point is < q1, q2 >   then:



< v1, v2 >  = < q1 – p1, q2 – p2 >  

length or magnitude of v is:  
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Zero vector has both initial and terminal points at (0,0).

Ex: Finding component form and length of v with initial point (3,-6) and 

      terminal point (-4,2).

Vector Operations: 

Basic Operations                           1) scalar multiplication






   2) vector addition

Scalar Multiplication:


If you multiply a constant k times a vector, the product is |k| times as long as v. If k is positive, it has the same direction and if k is negative, it goes in the opposite direction.
Geometric representation of scalar multiplication:

Algebraic:  kv = k < v1, v2 >  = < kv1, kv2 >



Ex: let v = < -7, 8 >, find 2v:

                    Ex:  let u = < -3, 4 > find -u  

Vector Addition:

Geometric:

Put tail of v to head of u
Where is u + v?

Initial of u drawn to head of v.

Addition is commutative, associative, and distributive

Algebraically:    u = < 3, -6 >     v = < -5, 2 >


u + v = 

Vector Subtraction u – v . Think of this as u + (-v) 

Geometric:

Algebraic u – v = < u1 – v1, u2 – v2 >

Ex: Let m = < -1, 5 >, n = < 4, -2 >


1. Find -3m

2. Find n – m 


3. Find -2m + n
Unit Vector: 

        The unit vector u has length 1 and the same direction as vector v.

        To find: divide v by its’ length 
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Ex: v = < -7, 8 >

Unit vector: 

Standard Unit Vectors < 1, 0 > and < 0 ,1 >



We always use i = < 1, 0 > and  j = < 0, 1 >







v = < v1, v2 >  







   = v1< 1, 0 > + v2 < 0, 1 >







   = v1i + v2j
v = v1i + v2j is called a linear combination.

To write Linear Combination:


1) Write the vector in component form


2) Use i and j to write the equation

Ex: v = vector from (1, 4) to (-3, 6), write as a linear combination

Ex: u = -2i – 6j and v = -4i + 2j 

      Find 3u + 2v:
You could solve by converting back to component form but it is not necessary.

Ex: unit vector w = -5i – 3j 

Show u + v graphically with a vector from (1,3) to (-3,-4) and a vector from 

(2,-2) to (4,-5). Move to standard position first.

Algebraically: 

Direction Angles: 


If u is a unit vector and 
[image: image20.wmf]q

 is the angle (counter-clockwise) from the x-axis, then u = < cos 
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, sin 
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 > because its’ terminal point is on the unit circle.
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unit vector = < cos 
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, sin 
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v = ||v|| < cos 
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 > or v = ||v|| [(cos 
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To find Directional Angles:

1) Put the vector in compound form or as a linear combination


2) Find tan 
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3) Find 
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Ex: Find the direction angle for:

 
A: v = 6i + 6j or < 6, 6 >


B: v = 2i – 5j   or < 2, -5 >

Dot Product – different from vector addition and scalar multiplication because in those you get a vector answer & in this you get a scalar answer.

Definition: Dot product of u = < u1, u2 > and v = < v1, v2 >





u • v = u1v1 + u2v2 
Properties:


1) u • v = v • u
    
2) 0 • v = 0

3) u • (v + w ) = u • v + u • w

4) v • v = ||v||2

5) k(u • v) = ku • v = u • kv
Ex: < 6,8 > • < 1,2 >  =

Ex: < 3,-5 > • < 3,2 > =

Ex: < 0, 4 > • < 2,1 > =

Using Properties

Ex: Let u = < 1,2 > , v = < 3,4 > and w = < -1, 2 >



Find u(v • w) = 



Find u • 3w =
Dot Product & Length


The dot product of u with itself is 7. What is the magnitude of u?

The Angle Between two non-zero vectors:



If 
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 is the angle between 2 non-zero vectors when u & v are in standard form 0≤ 
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Find the angle between u = < 3,2 > and v = < 1,4 >

Note: can also be rewritten as u • v = ||u||||v|| cos 
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Orthogonal Vectors:
   Definition: vectors are orthogonal if their dot products are 0.


If u • v = 0, then u and v are orthogonal.

Orthogonal basically means perpendicular.

Ex: Show that vectors u = < 2, -3 > and v = < 6,4 > are orthogonal.

Ex: Find the measure of the angle ABC where A = (4, 3), B = (1, -1) and 

                                                                          C =  (6 , -4).

Proof of  Properties:
Prove  v • v = ||v||2
Prove u • ( v + w ) = u • v + u • w
Prove (ru) • v  = r(u • v) 
DeMoivre’s Theorem: 

Graphing Complex Numbers

Absolute value of a complex number: a + bi = | a + bi | = 
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 Distance between (0,0) and (a,b).

Ex: z = -3 + 4i; find the absolute value
Polar Form of a Complex Number: 

Polar form of z = a + bi is z = r(cos 
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 + isin 
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  Where a = rcos 
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   b = rsin 
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   r = 
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   tan 
[image: image47.wmf]q

 = 
[image: image48.wmf]a

b

                
[image: image49.wmf]q

 = argument 

Ex: Write z = -3 + 
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i in trig form (polar form )

1. Graph                            2) Find r

            3) Find 
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4) Polar Form: 

Complex Form of a Polar: 

Ex: Write z = 6(cos 
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Multiplication and Division of Complex Numbers 



Let z1 = r1(cos 
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 + isin 
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[image: image56.wmf]q

 + isin 
[image: image57.wmf]q

)
Product z1• z2 = r1 r2 (cos (
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Quotient 
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Ex: Find the product z1z2 if z1 = 3(cos 
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   z2 = 4(cos 
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Ex: Find the quotient 
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Ex: if z1 = 3(cos 
[image: image78.wmf]3

2

p

 + isin 
[image: image79.wmf]3

2

p

) and z2 = 4(cos 
[image: image80.wmf]6

7

p

 + isin 
[image: image81.wmf]6

7

p

), 

      find z1z2 and 
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Powers of Complex Numbers:

DeMoivre’s Theorem ( if  z = r(cos 
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) is a complex number and n is a positive integer, then zn = rn(cos n
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 + isin n
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Ex: Find (-2 – 2i
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1. Convert to trig form (polar)


2. Use DeMoivre’s Theorem

Ex: Find (-4 – 2i )6
Ex: 
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Ex: (5+ i)(3 – 2i)

Definition of nth root of a Complex Number.

u = a + bi is the nth root of a complex number z if z = un = (a +bi)n.
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For a positive integer n, the complex number z = r(cos 
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where k = 0,1,2,3…n – 1 
Ex: Find the cube root of -8i.
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Find b and c.
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Find angle A & B
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