Unit 7 Notes Parabolas:

Ex: reflectors, microphones, (football game), (Davinci) satellites.

Light placed where rays will reflect parallel. This point is the focus.

Parabola – set of all points in a plane that are equidistant from the focus and a line called the directrix.

use point (5, 3) as focus.

$$\sqrt{(x_1-5)^2+(y_1-3)^2} = \sqrt{(x_1-x_1)^2+(y_1+1)^2}$$

Directrix y = -1 and pt(x, y)

Or Notes-

The line segment through the focus and perpendicular to the axis of symmetry whose endpoints are on the parabola is called the **latus rectum**.

1

$$x = h \text{ Axis of symmetry} \qquad \text{length} = |\frac{1}{a}| \text{ units.}$$
Graph
$$y = \frac{1}{8}(x-1)^2 + 4 \qquad \text{Ex: } y = \frac{1}{10}(x+2)^2 - 3$$

$$v = (1, 4)$$

$$x = 1$$
Focus: $(h, k + \frac{1}{4 \cdot \frac{1}{8}}) = (1, 6)$
Directrix
$$y = 2$$
L.R. = 8 units
We can have parabolas that open sideways too (inverses)

$$x = a (y-k)^2 + h \qquad \text{*notice } y = k \text{ is the A.S.}$$

Focus $(h + \frac{1}{4a}, k)$ Directrix $x = h - \frac{1}{4a}$

Standard Form: Book Uses:	$y = a(x - h)^{2} + k$ $(x - h)^{2} = 4p(y - k)$ $p = \frac{1}{4a}$	$x = a (y - k)^{2} + h$ (y - k) ² = 4p(x - h)
Vertex Axis of symmetry	(h, k) x = h	(h, k) y = k
Focus	$(h, k + \frac{1}{4a})$	$(\mathbf{h} + \frac{1}{4a}, \mathbf{k})$
Directrix	$y = k - \frac{1}{4a}$	$\mathbf{x} = \mathbf{h} - \frac{1}{4a}$
	a > 0 up a < 0 down	a > 0 right a < 0 left
L.R.	$ \frac{1}{a} $	$ \frac{1}{a} $
Graph: $6x = y^2 + 6y + 33$	Gi	caph $\frac{1}{2}(y+1) = (x-4)^2 - 1$
$6x = (y + 3)^2 + 24$		L
$x = \frac{1}{2}(x+3)^2 + 4$		

 $x = \frac{1}{6}(y+3)^{2} + 4$ * Vertex (,) A.S. Focus (,) L.R. = Directrix:

y y					
_					x
1					

Given the focus and directrix write the equation with a Focus (4, -4) and a directrix of y = 6.

Vertex (,)	A.S.
Focus (,)	L.R =
Directrix:			

Given the focus and vertex write the equation with a Focus (3, -4) and a vertex (3, 6). Find each of the following and graph the parabola.

1)
$$y = -2x^2 + 8x - 3$$

Vertex: Focus: Axis of Symmetry: Directrix: Direction of Opening:

2)
$$x = -\frac{1}{2}y^2 + 2y + 4$$

Vertex: Focus: Axis of Symmetry: Directrix: Direction of Opening:

Reflective Property of a Parabola: The tangent line to a parabola at point P makes equal angles with the following two lines:

- 1. The line passing through P and the focus
- 2. The axis of the parabola

Eccentricty of a Parabola: The eccentricity (how much it deviates from being circular) of a parabola is 1.

Circles- The set of all points in a plane that are equidistant from a given point called the center.

 $(x - h)^{2} + (y - k)^{2} = r^{2}$ center (h, k) radius = r

Ex:
$$x^{2} + y^{2} + 2x - 12y = 35$$

Ex:
$$3x^2 + 3y^2 + 6y + 6x = 2$$

Ex: Write the equation of the circle whose diameter has end pts (3, 5) and (6, 1).

Graph each of the following circles.

v /

x

3. $x^2 + y^2 - 6y - 16 = 0$

Ellipse: An ellipse is the set of all points in a plane such that the sum of the distances from two given points (foci) is constant.

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \qquad \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Horizontal

Vertical

Key

 $\mathbf{a}^2 > \mathbf{b}^2$ If $\mathbf{a}^2 = \mathbf{b}^2$ then it is a circle Center (h, k)

Major axis = 2a longer one Minor axis = 2b

Foci $a^2 - b^2 = c^2$

c units from center on major axis.

Write the equation in standard form..

Ex:
$$9x^{2} + 25y^{2} = 225$$
 Ex: $x^{2} + 9y^{2} - 4x + 54y + 49 = 0$

Ex:
$$x^{2} + 25y^{2} - 8x + 100y + 91 = 0$$

Write the equation:

- Ex: The endpoints of major axis (2, 12) & (2, -4)Endpoints of minor axis are ((4, 4) & (0, 4)
- Ex: Foci are at (12, 0) & (-12, 0). The endpoints of the minor axis are (0, 5) & (0, -5).
- Ex: $64x^{2} + 9y^{2} = 576$ Ex: $16y^{2} + 9x^{2} - 96y - 90x + 225 = 0$
- Graph: Ex 1: $9x^{2} + 25y^{2} = 225$

Ex 2:
$$x^{2} + 9y^{2} - 4x + 54y + 49 = 0$$

Center: Vertices: Foci:

Ex 3:
$$x^{2} + 25y^{2} - 8x + 100y + 91 = 0$$

Center: Vertices: Foci:

Ex 4:
$$16y^2 + 9x^2 - 96y - 90x + 225 = 0$$

Center: Vertices: Foci:

Hyperbola- Set of all points in a plane such that the absolute value of the difference of the distance from any point on the Hyperbola to two given points (foci) is constant.

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Center (h, k)

key a^2 comes first.

Vertices- a units from center

Asymptotes- as a hyperbola recedes from the center the branches approach lines called asymptotes.

Transverse axis = 2aConjugate axis= 2b

Foci
$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$$

Ex: $\frac{x^2}{25} - \frac{y^2}{49} = 1$
Ex: $25x^2 - 4y^2 + 100x + 24y - 36 = 0$

Ex:
$$y^2 - 4x^2 + 6y + 8x = 59$$
 Ex: $16x^2 - y^2 + 96x + 8y + 112 = 0$

Ex:
$$144y^2 - 25x^2 - 576y - 150x = 3,249$$

Ex1:
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

Vertical or Horizontal: Center: Vertices: Foci: Asymptotes:

Ex3:
$$25x^2 - 4y^2 + 100x + 24y - 36 = 0$$
 E

Vertical or Horizontal: Center: Vertices: Foci: Asymptotes:

Ex 2:
$$\frac{(y-3)^2}{4} - \frac{x^2}{9} = 1$$

Vertical or Horizontal: Center: Vertices: Foci: Asymptotes:

Ex 4:
$$y^2 - 4x^2 + 6y + 8x = 59$$

Vertical or Horizontal: Center: Vertices: Foci: Asymptotes:

Write the equation of a hyperbola with the following characteristics:

5: The asymptotes:
$$y = \pm \frac{5}{12}x$$
; focus (13, 0)

6: Center (2, -3); Vertex (5, -3); Focus (-10, -3)

7: Center (-6, -1); a = 4; b = 1; major axis is horizontal

Graphing Quadratic Functions:

Ex:
$$y = (x - 2)^{2} + 1$$

 $y = -4x + 5$

Ex:
$$5x^{2} + y^{2} = 30$$

 $6x^{2} - 2y^{2} = 4$

Ex:
$$4x^2 - y^2 = 36$$

 $(x - 5)^2 + y^2 = 64$

Ex:
$$x^{2} + y^{2} = 1$$

 $y = 3x + 1$
 $x^{2} + (y + 1)^{2} = 4$

Parametric Equation:

We have been doing graphs in x and y and now we will introduce a third variable to represent a curve in the plane. This third variable is called a parameter and often represents "time" though it could mean other things.

Ex: We could graph the curve representing a baseball that is hit at a 45° angle at a velocity of 50ft per sec.

To introduce t, we will write both x and y as a function of t and get parametric equations

Definitions

Plane curve- the set of ordered pairs (f(t), g(t)) if f and g are continuous functions of t

Parametric equations- x = f(t) and y = g(t) Parameter is t!

Sketching a plane curve

Choose increasing values of t and make an x, y, t table by substituting t into the equation.

Ex:
$$x = t^2 - 9$$
 $-3 \le t \le 3$
 $y = \frac{t^2}{3}$

Two different sets of parametric equations can have the same graph.

Ex:
$$x = t^2 - 4$$

 $y = \frac{t}{2}$ $-2 \le t \le 3$

Graph each

Eliminating the parameter:

Converting from parametric equations to rectangular equations (x,y)

- 1. Solve for t in one equation
- 2. Substitute what you get into the other equation

Ex:
$$x = t^2 - 9$$

 $y = \frac{t^2}{3}$

Ex: sometimes the parameter represents an angle rather than time. Sketch the curve represented by eliminating the parameter

Rectangular equation- good for sketching curve

Parametric equations- good for seeing position, direction, and speed

Examples:

Ex:
$$x = t$$

 $y = \frac{1}{2}t$
Ex: $x = t - 1$
 $y = \frac{t}{t-1}$

Ex: $x = \cos \theta$ $y = 2\sin 2\theta$

Finding parametric equations for a given graph You can let t be anything

Ex:
$$y = x^2 - 4$$
 Ex: $\frac{x^2}{4} - \frac{y^2}{16} = 1$

Ex: $x = a\cos t$ $y = a\sin t$ a > 0 is a constant

Ex:
$$x = \frac{3t^2}{4}$$
 $-4 \le t \le 4$ Ex: $x = 3t^2 + 12t + 12$ $-4 \le t \le 0$
 $y = t$ $y = 2t + 4$

Projectile motion- when an object is propelled upward at an inclination θ to the horizontal with initial speed v₀

 $x = (v_0 \cos \theta)t$ $y = -1/2gt^2 + (v_0 \sin \theta)t + h$ where t is time and g is constant due to gravity.

Ex: Suppose Jim hit a golf ball with initial velocity of 150 feet per second at an angle of 30° .

a) find parametric equations to describe position of the ball as a function of time.

b) how long is the golf ball in the air?

- c) when is the ball at max height ?
- d) determine the distance the ball traveled.

e) graph on calculator

Polar coordinate system:

 $(r, \theta) = polar coordinates$ $r = \theta =$

Plotting points on the Coordinate System:

B
$$(2, -\frac{\pi}{3})$$
 C $(1, \frac{2\pi}{3})$

The same point can represent many polar coordinates:

Ex: (r, θ) and $(r, 2\pi + \theta)$ are the same point

 $(r,\,\theta)$ and $(\text{-}r,\,\pi+\theta)$ are the same point

 $\frac{\text{Formulas:} (\mathbf{r}, \theta) = (\mathbf{r}, \theta \pm 2k\pi)}{(\mathbf{r}, \theta) = (-\mathbf{r}, \theta \pm (2k\pi + \pi))}$

Example: Plot the point $(2, -\frac{\pi}{6})$ and find 3 additional polar coordinates for this point in the interval $-2\pi < \theta < 2\pi$.

Coordinate Conversion:

 (r, θ) is related to rectangular coordinates (x, y) by the following equations:

 $x = r \cos \theta$ and $tan \theta = y/x$ $y = r \sin \theta$ $r^2 = x^2 + y^2$ or $r = \sqrt{(x^2 + y^2)}$

Polar to Rectangular Conversion

Ex: Convert $(3, \frac{\pi}{3})$ and $(-4, \frac{\pi}{4})$ to rectangular coordinates.

Rectangular to Polar Conversion

Find the angle and distance Remember what quadrant you are in!

Ex: Convert (-4, $4\sqrt{3}$) and (0, 1) to polar coordinates

Equation Conversion:

Rectangular to Polar: Ex: Convert $x^2 + y^2 = 4$ to a polar equation.

Ex:
$$2x - y + 6 = 0$$
 Ex: $y = x^2$

Polar to Rectangular:

- 1. r =
- 2. $\theta =$
- 3. equations with r and θ

Ex:
$$r = 4$$
 Ex: $\theta = \frac{\pi}{4}$

Ex:
$$r = \csc \theta + 2$$
 Ex: $r = \frac{3}{4 + 5\cos \theta}$

Graphs of Polar Equations:

Graphing polar equations by plotting points.

Ex: Sketch the graph $r = 5\cos\theta$

1. choose values of θ in $0 \le \theta \le 2\pi$

Make a Table:

Ex: Sketch $r = 3 + 2\cos\theta$

Look at graphs on a calculator:

To graph solve for r

Hint: Use ZOOM SQUARE to make it accurate

Ex:
$$r = \frac{2}{4\cos\theta + 5\sin\theta}$$

Ex: $r = 5$
Ex: $r^2 = \sin 2\theta$
Ex: $\pm \sqrt{\frac{4}{\cos\theta\sin\theta}}$

Different types of Polar Graphs:

- the graphs of these are easier to distinguish in polar form than in rectangular form

I. Limaçon- 4 Types

	uşon 4 I j		
		$r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$	a > 0 b >0
1.	$\frac{a}{b} < 1$	Limaçon- with an inner	loop
		Ex: $r = 1 + 2\cos\theta$	
2.	$\frac{a}{b} = 1$	Cardioid	
		Ex: $r = 3 + 3\cos\theta$	
3.	$1 < \frac{a}{b} < 2$	Dimpled Limaçon Ex: $r = 3 + 2\sin\theta$	
4.	$\frac{a}{b} \ge 2$	Convex Limaçon Ex: $r = 8 + 3\sin\theta$	

II. Rose Curves $r = a \cos n\theta$ $n \ge 2$ $r = a \sin n\theta$ n petals if n is odd 2n petals if n is even Ex: $r = -2\cos 3\theta$ Ex: $r = 5\cos 8\theta$ III. Circles $r = a\cos\theta$ $r = a \sin \theta$ IV. Lemniscates – $r^2 = a^2 \cos 2\theta$ $r^2 = a^2 \sin 2\theta$ Symmetry: **Polar Rectangular**

1. Line $\theta = \frac{\pi}{2}$ with respect to the y- axis

Replace (r, θ) by $(r, \pi - \theta)$ or $(-r, -\theta)$

2. Polar Axis with respect to the x –axis

Replace (r, θ) by $(r, -\theta)$ or $(-r, \pi - \theta)$

3. Pole with respect to the origin

Replace (r, θ) by $(r, \pi + \theta)$ or $(-r, \theta)$

Roses: if $n \ge 2$ then they have symmetry about the polar axis, the line $\theta = \frac{\pi}{2}$, or both.

Lemniscates: They have symmetry about the pole.

Graphs of $\mathbf{r} = f(\sin \theta)$ have symmetry about the line $\theta = \frac{\pi}{2}$.

Graphs of $r = f(\cos \theta)$ have symmetry about the polar axis.

Graph $r = \theta + 2\pi$ - Spiral of Archimedes Graph $r = e^{\cos\theta} - 2\cos 4\theta + \sin^5 \frac{\theta}{12}$ - Butterfly