Unit 7 Notes
Parabolas:
Ex: reflectors, microphones, (football game), (Davinci) satellites.
Light placed where rays will reflect parallel. This point is the focus.

Parabola - set of all points in a plane that are equidistant from the focus and a line called the directrix.

use point $(5,3)$ as focus.

$$
\sqrt{\left(x_{1}-5\right)^{2}+\left(y_{1}-3\right)^{2}}=\sqrt{\left(x_{1}-x_{1}\right)^{2}+\left(y_{1}+1\right)^{2}}
$$

Directrix $y=-1$ and $\operatorname{pt}(x, y)$
Or Notes-

The line segment through the focus and perpendicular to the axis of symmetry whose endpoints are on the parabola is called the latus rectum.

$$
\mathrm{x}=\mathrm{h} \text { Axis of symmetry }
$$

Graph $y=\frac{1}{8}(x-1)^{2}+4$

$$
\begin{aligned}
& \mathrm{v}=(1,4) \\
& \mathrm{x}=1
\end{aligned}
$$

Focus: $\left(\mathrm{h}, \mathrm{k}+\frac{1}{4 \cdot \frac{1}{8}}\right)=(1,6)$
Directrix $\quad y=2$
L.R. $=8$ units

We can have parabolas that open sideways too (inverses)
$x=a(y-k)^{2}+h$
*notice $\mathrm{y}=\mathrm{k}$ is the A.S.
Focus $\left(\mathrm{h}+\frac{1}{4 a}, \mathrm{k}\right) \quad$ Directrix $\quad \mathrm{x}=\mathrm{h}-\frac{1}{4 a}$

Standard Form:

$$
x=a(y-k)^{2}+h
$$

Book Uses:

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& (x-h)^{2}=4 \mathbf{p}(\mathbf{y}-\mathbf{k}) \\
& \mathbf{p}=\frac{1}{4 a}
\end{aligned}
$$

Vertex
Axis of symmetry

Focus

Directrix
L.R.

Graph: $6 x=y^{2}+6 y+33$

$$
\begin{aligned}
& 6 x=(y+3)^{2}+24 \\
& x=\frac{1}{6}(y+3)^{2}+4
\end{aligned}
$$

* Vertex (,) A.S.

Focus (,) L.R. =
Directrix:
(h, k)
$\mathrm{x}=\mathrm{h}$
(h, $\mathrm{k}+\frac{1}{4 a}$)

$$
\mathrm{y}=\mathrm{k}-\frac{1}{4 a}
$$

$$
a>0 \text { up }
$$

$$
\mathrm{a}<0 \text { down }
$$

$$
\left|\frac{1}{a}\right|
$$

(h, k)
$y=k$
$\left(\mathrm{h}+\frac{1}{4 a}, \mathrm{k}\right)$
$\mathrm{x}=\mathrm{h}-\frac{1}{4 a}$
a >0 right
a<0 left
$\left|\frac{1}{a}\right|$
Graph $\frac{1}{2}(y+1)=(x-4)^{2}-1$

Vertex (,) A.S. Focus (,) L.R = Directrix:

Given the focus and vertex write the equation with a
Focus (3, -4) and a vertex (3, 6).

Find each of the following and graph the parabola.

1) $y=-2 x^{2}+8 x-3$
2) $x=-\frac{1}{2} y^{2}+2 y+4$

Vertex:
Focus:
Axis of Symmetry:
Directrix:
Direction of Opening:

Vertex:
Focus:
Axis of Symmetry:
Directrix:
Direction of Opening:

Reflective Property of a Parabola: The tangent line to a parabola at point P makes equal angles with the following two lines:

1. The line passing through P and the focus
2. The axis of the parabola

Eccentricty of a Parabola: The eccentricity (how much it deviates from being circular) of a parabola is 1 .

Circles- The set of all points in a plane that are equidistant from a given point called

 the center.$$
\begin{aligned}
& (\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2} \\
& \text { center }(\mathrm{h}, \mathrm{k}) \quad \text { radius }=\mathrm{r}
\end{aligned}
$$

Ex: $x^{2}+y^{2}+2 x-12 y=35$
Ex: $3 x^{2}+3 y^{2}+6 y+6 x=2$

Ex: Write the equation of the circle whose diameter has end pts $(3,5)$ and $(6,1)$.

$$
\begin{aligned}
& \text { Diameter }=\quad \text { Radius }= \\
& \text { Center }(, \quad)
\end{aligned}
$$

Graph each of the following circles.

1. $x^{2}+12 x+y^{2}+2 y=-28$
2. $x^{2}+y^{2}+8 y-10 x+16=0$

3. $x^{2}+y^{2}-6 y-16=0$

4. $(x+3)^{2}+y^{2}=16$

Ellipse: An ellipse is the set of all points in a plane such that the sum of the distances from two given points (foci) is constant.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Horizontal

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Vertical

Key $\quad \mathbf{a}^{2}>\mathbf{b}^{2}$
If $a^{2}=b^{2}$ then it is a circle
Center (h, k)
Major axis $=2 \mathrm{a} \quad$ longer one
Minor axis $=2 \mathrm{~b}$

Foci $\quad \mathbf{a}^{2}-\mathbf{b}^{2}=\mathbf{c}^{2}$
c units from center on major axis.

Write the equation in standard form..
Ex: $9 x^{2}+25 y^{2}=225$
Ex: $x^{2}+9 y^{2}-4 x+54 y+49=0$

Ex: $x^{2}+25 y^{2}-8 x+100 y+91=0$

Write the equation:

Ex: The endpoints of major axis $(2,12) \&(2,-4)$
Endpoints of minor axis are $((4,4) \&(0,4)$

Ex: Foci are at $(12,0) \&(-12,0)$.
The endpoints of the minor axis are $(0,5) \&(0,-5)$.
Ex: $64 x^{2}+9 y^{2}=576$
Ex: $16 y^{2}+9 x^{2}-96 y-90 x+225=0$

Graph:
Ex 1: $9 x^{2}+25 y^{2}=225$
Ex 2: $x^{2}+9 y^{2}-4 x+54 y+49=0$

Center:
Vertices:
Foci:

Center:
Vertices:
Foci:

Ex 3: $x^{2}+25 y^{2}-8 x+100 y+91=0$
Center:
Vertices:
Foci:

Ex 4: $16 y^{2}+9 x^{2}-96 y-90 x+225=0$
Center:
Vertices:
Foci:

Hyperbola- Set of all points in a plane such that the absolute value of the difference of the distance from any point on the Hyperbola to two given points (foci) is constant.

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Center (h, k)
key a^{2} comes first.
Vertices- a units from center
Asymptotes- as a hyperbola recedes from the center the branches approach lines called asymptotes.

Transverse axis $=2 \mathrm{a}$
Conjugate axis $=2 b$
Foci $\quad a^{2}+b^{2}=c^{2}$
Ex: $\frac{x^{2}}{25}-\frac{y^{2}}{49}=1$
Ex: $25 x^{2}-4 y^{2}+100 x+24 y-36=0$

Ex: $y^{2}-4 x^{2}+6 y+8 x=59$
Ex: $16 x^{2}-y^{2}+96 x+8 y+112=0$

Ex: $144 y^{2}-25 x^{2}-576 y-150 x=3,249$

Ex1: $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
Vertical or Horizontal:
Center: Vertices:
Foci:
Asymptotes:

Ex3: $25 x^{2}-4 y^{2}+100 x+24 y-36=0$

Vertical or Horizontal:
Center: Vertices:
Foci:
Asymptotes:

Ex 2: $\frac{(y-3)^{2}}{4}-\frac{x^{2}}{9}=1$
Vertical or Horizontal:
Center: Vertices:
Foci:
Asymptotes:

Ex 4: $y^{2}-4 x^{2}+6 y+8 x=59$

Vertical or Horizontal:
Center: Vertices:
Foci:
Asymptotes:

Write the equation of a hyperbola with the following characteristics:
5: The asymptotes: $y= \pm \frac{5}{12} x$; focus $(13,0)$

6: Center (2, -3); Vertex (5, -3); Focus (-10, -3)

7: Center $(-6,-1) ; \mathrm{a}=4 ; \mathrm{b}=1$; major axis is horizontal

Graphing Quadratic Functions:

Ex: $y=(x-2)^{2}+1$

$$
y=-4 x+5
$$

Ex: $5 x^{2}+y^{2}=30$
$6 x^{2}-2 y^{2}=4$

Ex: $4 x^{2}-y^{2}=36$
$(x-5)^{2}+y^{2}=64$

Ex: $x^{2}+y^{2}=1$
$y=3 x+1$
$x^{2}+(y+1)^{2}=4$

Parametric Equation:

We have been doing graphs in x and y and now we will introduce a third variable to represent a curve in the plane. This third variable is called a parameter and often represents "time" though it could mean other things.

Ex: We could graph the curve representing a baseball that is hit at a 45° angle at a velocity of 50 ft per sec.

To introduce t, we will write both x and y as a function of t and get parametric equations
Definitions
Plane curve- the set of ordered pairs $(f(\mathrm{t}), g(\mathrm{t}))$ if f and g are continuous functions of t
Parametric equations- $\mathrm{x}=f(\mathrm{t})$ and $\mathrm{y}=g(\mathrm{t}) \quad$ Parameter is $\mathrm{t}!$
Sketching a plane curve
Choose increasing values of t and make an x, y, t table by substituting t into the equation.
Ex: $\mathrm{x}=\mathrm{t}^{2}-9 \quad-3 \leq \mathrm{t} \leq 3$

$$
\mathrm{y}=\frac{t^{2}}{3}
$$

Two different sets of parametric equations can have the same graph.

$$
\begin{aligned}
\mathrm{Ex}: \mathrm{x} & =\mathrm{t}^{2}-4 \\
\mathrm{y} & =\frac{t}{2}
\end{aligned}
$$

Graph each

Eliminating the parameter:

Converting from parametric equations to rectangular equations (x, y)

1. Solve for t in one equation
2. Substitute what you get into the other equation

$$
\begin{aligned}
\mathrm{Ex}: \mathrm{x} & =\mathrm{t}^{2}-9 \\
\mathrm{y} & =\frac{t^{2}}{3}
\end{aligned}
$$

Ex: sometimes the parameter represents an angle rather than time.
Sketch the curve represented by eliminating the parameter
$\mathrm{x}=2 \cos \theta$
$0 \leq \theta \leq 2 \pi$
$\mathrm{y}=6 \sin \theta$

Rectangular equation- good for sketching curve

Parametric equations- good for seeing position, direction, and speed
Examples:
Ex: $\mathrm{x}=\mathrm{t}$
$y=\frac{1}{2} t$
Ex: $\mathrm{x}=\mathrm{t}-1$
$\mathrm{y}=\frac{t}{t-1}$

Ex: $\mathrm{x}=\cos \theta$
$y=2 \sin 2 \theta$
Finding parametric equations for a given graph
You can let t be anything

Ex: $y=x^{2}-4$
Ex: $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$

Ex: $x=\operatorname{acos} t \quad y=\operatorname{asin} t \quad a>0$ is a constant

$$
\begin{array}{ccc}
\text { Ex: } x=\frac{3 t^{2}}{4} & -4 \leq t \leq 4 \\
y & =t & \text { Ex: } \\
x=3 t^{2}+12 t+12 & -4 \leq t \leq 0 \\
y=2 t+4
\end{array}
$$

Projectile motion- when an object is propelled upward at an inclination θ to the horizontal with initial speed v_{0}
$\mathrm{x}=\left(v_{0} \cos \theta\right) t \quad \mathrm{y}=-1 / 2 \mathrm{gt}^{2}+\left(v_{0} \sin \theta\right) t+h$
where t is time and g is constant due to gravity.
Ex: Suppose Jim hit a golf ball with initial velocity of 150 feet per second at an angle of 30°.
a) find parametric equations to describe position of the ball as a function of time.
b) how long is the golf ball in the air ?
c) when is the ball at max height ?
d) determine the distance the ball traveled.
e) graph on calculator

Polar coordinate system:

$(\mathrm{r}, \theta)=$ polar coordinates
$\mathrm{r}=$
$\theta=$

Plotting points on the Coordinate System:

Plot: A $\left(3, \frac{\pi}{6}\right)$
B $\left(2,-\frac{\pi}{3}\right)$
C $\left(1, \frac{2 \pi}{3}\right)$

The same point can represent many polar coordinates:
Ex: (r, θ) and $(r, 2 \pi+\theta)$ are the same point (r, θ) and $(-\mathrm{r}, \pi+\theta)$ are the same point

Formulas: $(\mathrm{r}, \theta)=(\mathrm{r}, \theta \pm 2 \mathrm{k} \pi)$ $(\mathrm{r}, \theta)=(-\mathrm{r}, \theta \pm(2 \mathrm{k} \pi+\pi)$

Example: Plot the point $\left(2,-\frac{\pi}{6}\right)$ and find 3 additional polar coordinates for this point in the interval $-2 \pi<\theta<2 \pi$.

Coordinate Conversion:

(r, θ) is related to rectangular coordinates (x, y) by the following equations:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

$$
\text { and } \tan \theta=y / x
$$

$$
\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} \quad \text { or } \quad \mathrm{r}=\sqrt{\left(x^{2}+y^{2}\right)}
$$

Polar to Rectangular Conversion
Ex: Convert ($3, \frac{\pi}{3}$) and $\left(-4, \frac{\pi}{4}\right)$ to rectangular coordinates.

Rectangular to Polar Conversion

Find the angle and distance
Remember what quadrant you are in!
Ex: Convert $(-4,4 \sqrt{3})$ and $(0,1)$ to polar coordinates

Equation Conversion:

Rectangular to Polar:

Ex: Convert $x^{2}+y^{2}=4$ to a polar equation.
Ex: $2 \mathrm{x}-\mathrm{y}+6=0$
Ex: $y=x^{2}$

Polar to Rectangular:

1. $\mathrm{r}=$
2. $\theta=$
3. equations with r and θ

Ex: $\mathrm{r}=4$
Ex: $\theta=\frac{\pi}{4}$

Ex: $\mathrm{r}=\csc \theta+2$
Ex: $r=\frac{3}{4+5 \cos \theta}$

Graphs of Polar Equations:

Graphing polar equations by plotting points.
Ex: Sketch the graph $r=5 \cos \theta$

1. choose values of θ in $0 \leq \theta \leq 2 \pi$

Make a Table:

θ												
r												

Look at graphs on a calculator:

To graph solve for r

Ex: $r=\frac{2}{4 \cos \theta+5 \sin \theta}$

Ex: $r^{2}=\sin 2 \theta$

Hint: Use ZOOM SQUARE to make it accurate

Ex: $\mathrm{r}=5$
$\mathrm{Ex}: \pm \sqrt{\frac{4}{\cos \theta \sin \theta}}$

Different types of Polar Graphs:

- the graphs of these are easier to distinguish in polar form than in rectangular form

I. Limaçon- 4 Types

$$
\begin{aligned}
r & =a \pm b \cos \theta \quad \mathbf{a}>\mathbf{0} \quad \mathbf{b}>\mathbf{0} \\
r & =a \pm b \sin \theta
\end{aligned}
$$

1. $\frac{a}{b}<1 \quad$ Limaçon- with an inner loop Ex: $r=1+2 \cos \theta$
2. $\frac{a}{b}=1 \quad$ Cardioid

Ex: $r=3+3 \cos \theta$
3. $1<\frac{a}{b}<2 \quad$ Dimpled Limaçon

$$
\text { Ex: } r=3+2 \sin \theta
$$

4. $\frac{a}{b} \geq 2 \quad$ Convex Limaçon

Ex: $r=8+3 \sin \theta$

II. Rose Curves -

$$
\begin{array}{ll}
r & =a \cos n \theta \\
r & =a \sin n \theta
\end{array} \quad \mathbf{n} \geq \mathbf{2}
$$

n petals if n is odd
$2 n$ petals if n is even
Ex: $r=-2 \cos 3 \theta$

$$
\text { Ex: } r=5 \cos 8 \theta
$$

III. Circles -

$$
\begin{aligned}
& r=a \cos \theta \\
& r=a \sin \theta
\end{aligned}
$$

IV. Lemniscates -

$$
\begin{aligned}
& r^{2}=a^{2} \cos 2 \theta \\
& r^{2}=a^{2} \sin 2 \theta
\end{aligned}
$$

Symmetry:

Polar

Rectangular

1. Line $\theta=\frac{\pi}{2} \quad$ with respect to the y - axis

Replace (r, θ) by $(r, \pi-\theta)$ or $(-r,-\theta)$
2. Polar Axis with respect to the x-axis

Replace (r, θ) by $(r,-\theta)$ or $(-r, \pi-\theta)$
3. Pole with respect to the origin

Replace (r, θ) by $(r, \pi+\theta)$ or $(-r, \theta)$
Roses: if $\mathrm{n} \geq 2$ then they have symmetry about the polar axis, the line $\theta=\frac{\pi}{2}$, or both.
Lemniscates: They have symmetry about the pole.

Graphs of $\mathrm{r}=f(\sin \theta)$ have symmetry about the line $\theta=\frac{\pi}{2}$.

Graphs of $\mathrm{r}=f(\cos \theta)$ have symmetry about the polar axis.
Graph $\mathrm{r}=\theta+2 \pi$ - Spiral of Archimedes Graph $\mathrm{r}=e^{\cos \theta}-2 \cos 4 \theta++\sin ^{5} \frac{\theta}{12}$ - Butterfly

