Precalculus Notes Day 1

Rules For Domain: When the domain is not specified, it consists of \mathfrak{R} (all real numbers) for which the corresponding values in the range are also real numbers.

1. If x is in the numerator and raised to a positive integral.

Ex. $f(x) = x^2$ or $f(x) = \frac{x^3}{4} + 8$ Domain: All reals $(-\infty, \infty)$

2. If x is in the denominator, x cannot be any value that makes the denominator zero.

Ex.
$$f(x) = \frac{x^2}{x+1}$$
 Ex: $f(x) = \frac{x+1}{x^2+4x-21}$

3. If x is inside a square root, values of x are restricted to ones that will make the radicand ≥ 0 .

Ex.
$$f(x) = \sqrt{x-3}$$
 Ex: $f(x) = \sqrt{3x+7}$

4. If x is in the square root and in the denominator, values of x are restricted to the one that will make the **radicand** > 0.

Ex.
$$f(x) = \frac{1}{\sqrt{x}}$$
 Ex: $f(x) = \frac{x}{\sqrt{x-5}}$

Range of a Relation – set of y values of a relation

Function: special type of relation in which each element of the domain is paired with **exactly one** element of the range.

Testing For Functions Algebraically– Solve for y in terms of x. If each value of x corresponds to exactly one value of y, then y is a function of x.

Vertical Line Test: tests a graph to see if it is a function.

Horizontal Line Test: tests a graph to see if the function's inverse is also a function.

Function Notation: If the graph is a function we can use f(x) instead of y

Find f(-1) if $f(x) = -x^3 - 1$.

Find f(-2) if $f(x) = \frac{x-1}{x^2}$.

Piecewise Functions: A functions that is defined by two (or more) equations over a specified domain.

Ex:
$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ x - 1 & \text{if } x \ge 0 \end{cases}$$

Ex: $h(x) = \begin{cases} x + 3 & \text{if } x < -3 \\ -(x - 1) & \text{if } x \ge -3 \end{cases}$
Find: $f(-3) = f(6) = f(6) = h(-6) = h(-3) = h(-3)$

The difference quotient, $\frac{f(x+h) - f(x)}{h} h \neq 0$, plays an important role in

understanding the rate at which a function changes.

Using the difference quotient, find and simplify

1.
$$f(x) = x^2 - 4x + 3$$

2. $f(x) = \sqrt[2]{3-x}$

$$f(\mathbf{x}) = \begin{cases} x^2 + 1 & x < 0\\ x - 1 & x \ge 0 \end{cases}$$

Day 2

Graph function by hand:

Graph on calculator $y_1 = (x^2 + 1) (x < 0) + (x - 1) (x \ge 0)$

Determine the intervals on which the function is:

Increasing: _____

Decreasing: _____

Constant: _____

Find the relative maximum: _____

Using a calc: Find the relative max/ and or min of $f(x) = 2x^3 + 3x^2 - 12x + 1$ Determine the intervals on which each is increasing, decreasing, or constant.

a.
$$f(x) = x^2 + 4x - 12$$

b. $g(x) = x^3 + 1$

c.
$$h(x) = x^3 + x^2 - x + 2$$
 d. $p(x) = 2$

Even and Odd Functions:

A graph has symmetry with respect to the y-axis if whenever (x, y) is on the graph then so is (-x, y).

A graph has symmetry with respect to the origin if (x, y) is on the graph then so is (-x, -y).

A graph has symmetry with respect to the x-axis if whenever (x, y) is on the graph then so is (x, -y).

Even Function: A function whose graph is symmetric to the y-axis. f(-x) = f(x)

Ex:
$$f(x) = x^2$$
 Ex: $f(x) = 3x^2 + 4x$

Ex:
$$f(x) = 4$$
 Ex: $f(x) = x^6 - x^3 + 6x^2$

Odd Function: A function whose graph is symmetric to the origin. f(-x) = -f(x)

Ex:
$$f(x) = 3x^3 + 1$$
 Ex: $f(x) = \frac{2}{5}x$

Ex:
$$f(x) = 4x - 1$$
 Ex: $f(x) = x^3 - x$

Determine whether each function is even, odd, or neither.

a.
$$y = x^2 + x$$
 b. $y = x^5 + x$ c. $y = x\sqrt{1 - x^2}$

Day 3

Toolkit Functions:

1. y = c2. $y = \sqrt{x}$ 3. $y = a^x$ 4. y = x5. $y = x^3$ 6. $y = \log_a x$ 7. $y = x^2$ 8. y = 1/x9. $y = \sin x$ 10. y = |x|11. y = [x]13. $y = \cos x$

Describe Domain & Range

Remember $y = a(b(x - h)^2 + k)$

a < 1	h > 0
a > 1	h < 0
b > 1 b < 1	$k > 0 \\ k < 0$

Take a look at (Describe the transformations)

$\mathbf{y} = \sqrt{x}$	$\mathbf{y} = \mathbf{x}^3$
$\mathbf{y} = \sqrt{x+3}$	$y = (x - 2)^3$
$y = \sqrt{x} - 5$	$y = x^3 + 4$
$y = 3\sqrt{x-4} + 2$	$y = \frac{1}{2} x^3 - 6$
$\mathbf{v} = \mathbf{v} $	$\mathbf{v} - \sin \mathbf{v}$
$\mathbf{y} = \mathbf{A} $	$y = \sin x$
y = x + 5	y = sin (x + 2)
y = x - 3	$y = \sin x - 4$
y = 4 x - 5	$y = 3\sin(x - 4) + 5$
Describe transformations	
Describe transformations	
$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = (1 \cdot 1 \cdot 1)^2 + (1 \cdot 1 \cdot 1)^2 \cdot 1 = (1 \cdot$	$2 \cdot 1 \cdot $

1: $y = (x - 2)^2 + 4$	2: $y = - x + 6 - 2$

$3: \mathbf{y} = -5\sqrt{2x+3}$	4: $y = \frac{1}{2}\sin(4x - 2) + 1$
---------------------------------	--------------------------------------

Dav 4 – 5	Sum (f + g)(x) = f(x) + g(x)
2 4 9 1 2	Difference $(f - g)(x) = f(x) - g(x)$

Combination of Functions:

Product $(fg)(x) = f(x) \bullet g(x)$

Quotient
$$\left(\frac{f}{g}\right)(\mathbf{x}) = \frac{f(x)}{g(x)} g(\mathbf{x}) \neq 0$$

Given:
$$f(x) = 3x - 1$$

Find: $f(x) + g(x) =$
 $f(x) - g(x) =$

$$f(\mathbf{x}) \bullet g(\mathbf{x}) = \frac{f(\mathbf{x})}{g(\mathbf{x})} =$$

The domain of an arithmetic combination of two functions consists of all real numbers that are common to both functions.

 $f(\mathbf{x}) = 3\mathbf{x} - 1 \qquad g(\mathbf{x}) = \mathbf{x}^2 + 2\mathbf{x} - 24$ Find: 1. (f + g)(2) = 2. (f - g)(-3) = 3. $f(4) \cdot g(4) = 4$. $\frac{f}{g}(-2) = 4$. What is the domain:? 5. $f(\mathbf{x}) = \sqrt{x}$ 6. $g(\mathbf{x}) = \sqrt{4 - x^2}$

Composition of Functions: The composition of the functions f with g is denoted by $f \circ g$ and is defined by the equation $(f \circ g)(\mathbf{x}) = f(g(\mathbf{x}))$

- $f(\mathbf{x}) = \mathbf{x}^2 4 \qquad \qquad g(\mathbf{x}) = 2\mathbf{x} 5$ 1. $(f \circ g)(4) = \qquad \qquad 2. (g \circ f)(-2) =$
- 3. (g(f(-3)) = 4. (f(g(3)) =

The domain of the composite function $f \circ g$ is the set of all x such that

- 1. x is in the domain of g and
- 2. g(x) is in the domain of f.

The following values must be excluded from the input of x:

- 1. If x is not in the domain of g, it must not be in the domain of $f \circ g$
- 2. Any x for which g(x) is not in the domain of f must not be in the domain of $f \circ g$

$$f(\mathbf{x}) = \sqrt{x} \qquad \qquad g(\mathbf{x}) = 2\mathbf{x}^2 + 3$$

1.
$$(f + g)(x)$$
 2. $(g + f)(x)$ 3. $\frac{f(x)}{g(x)}$

- 4. $f(x) \bullet g(x)$ 5. $(f \circ g)(x)$ 6. $(g \circ f)(x)$
- 1. Find each of the following for $f(x) = \frac{2}{x-1}$ and $g(x) = \frac{3}{x}$. Find the domain of each. a. $(f \circ g)(x)$ b. $(g \circ f)(x)$
- 2. For: $f(x) = x^2 + 3$ $g(x) = \sqrt{x}$
 - Domain of $(f \circ g) =$ Domain of $(g \circ f) =$
- 3. For: $f(x) = x^2 9$ $g(x) = \sqrt{9 x^2}$
 - Domain of $(f \circ g)(x) =$ Domain of $(g \circ f)(x) =$
- 4. For: f(x) = 2x + 3 $g(x) = \frac{1}{2}(x 3)$

What is $(f \circ g)(x)$? What is $(g \circ f)(x)$? What do we notice?

When you form a composite function, you "compose" two functions to form a new function. It is possible to reverse this process. You can "decompose" a given function and express it as a composition of two or more functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind. Consider $h(x) = (3x^2 - 4x + 1)^5$.

Express the given functions h as a composition of two functions f and g so that $h(x) = (f \circ g)(x)$

a. $h(x) = \sqrt[3]{x^2 + 1}$ b. h(x) = |3x - 4| c. $h(x) = \frac{1}{2x - 3}$

Inverses:

Let *f* and *g* be two functions such that f(g(x)) = x for every x in the domain of *g* and g(f(x)) = x for every x in the domain of f.

The function g is the inverse of the function f, and is denoted by f^{-1} (read "f-inverse"). Thus, $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. The domain of f is equal to the range of f^{-1} , and vice versa.

Find the inverse of f informally. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

a.
$$f(x) = 5x$$

b. $f(x) = x^2$
c. $f(x) = x + 2$

The graph of an inverse is the reflection of the original function over the line y = x.

To have an inverse function, a function must be one-to-one, which means no two elements in the domain correspond to the same element in the range of f. You can use the horizontal line test to determine if a function is one-to-one.

Algebraically find the inverse of each function. Then graph the function and the inverse.

a.
$$f(x) = x + 3$$
 b. $f(x) = \frac{1}{x}$ c. $f(x) = (x + 3)^2$ d. $f(x) = \sqrt{x + 2}$

- Day 6
 - 1. Minimum and maximum values are often referred to as ______ values. To approximate extreme values for a function.
 - a. Sketch and label a diagram.
 - b. Write a rule(equation) for the quantity to be minimized or maximized in terms of a single variable.
 - c. Determine the domain for the equation.
 - d. With a graphing calculator, graph the equation and use the function on the calculator to approximate the desired minimum or maximum value.
 - e. Re-read the question and be sure to give the answer for the question that was asked.
 - 2. Express the area A of a circle as a function of its circumference C, express C as a function of A.
 - 3. P(x,y) is an arbitrary point on the line x 3y = 5.
 - a. Express the distance d from the origin to P as a function of the ycoordinate of P.
 - b. Without graphing, find the minimum distance d and the point P associated with the minimum d.
 - c. What are the domain and range of the distance function?
 - 4. A power station and a factory are on the opposite sides of a river 60 m wide. A cable must be run from the power station to the factory. It costs \$25 per meter to run the cable in the river and \$20 per meter on land. Use a graphing calculator to find the minimum cost.

