Rules For Domain: When the domain is not specified, it consists of \mathfrak{R} (all real numbers) for which the corresponding values in the range are also real numbers.

1. If x is in the numerator and raised to a positive integral.

Ex. $f(\mathrm{x})=\mathrm{x}^{2}$ or $f(\mathrm{x})=\frac{x^{3}}{4}+8 \quad$ Domain: All reals $(-\infty, \infty)$
2. If x is in the denominator, x cannot be any value that makes the denominator zero.

Ex. $f(x)=\frac{x^{2}}{x+1}$
Ex: $f(\mathrm{x})=\frac{x+1}{x^{2}+4 x-21}$
3. If x is inside a square root, values of x are restricted to ones that will make the radicand $\geq \mathbf{0}$.
Ex. $f(\mathrm{x})=\sqrt{x-3}$
Ex: $f(\mathrm{x})=\sqrt{3 x+7}$
4. If x is in the square root and in the denominator, values of x are restricted to the one that will make the radicand >0.
Ex. $f(\mathrm{x})=\frac{1}{\sqrt{x}} \quad$ Ex: $f(\mathrm{x})=\frac{x}{\sqrt{x-5}}$

Range of a Relation - set of y values of a relation
Function: special type of relation in which each element of the domain is paired with exactly one element of the range.

Testing For Functions Algebraically-Solve for y in terms of x. If each value of x corresponds to exactly one value of y, then y is a function of x.

Vertical Line Test: tests a graph to see if it is a function.

Horizontal Line Test: tests a graph to see if the function's inverse is also a function.

Function Notation: If the graph is a function we can use $f(\mathrm{x})$ instead of y
Find $f(-1)$ if $f(x)=-x^{3}-1$.
Find $f(-2)$ if $f(x)=\frac{x-1}{x^{2}}$.
Piecewise Functions: A functions that is defined by two (or more) equations over a specified domain.

Ex: $\quad f(\mathrm{x})=\left\{\begin{array}{cl}x^{2}+1 & \text { if } x<0 \\ x-1 & \text { if } x \geq 0\end{array} \quad\right.$ Ex: $h(\mathrm{x})=\left\{\begin{array}{cl}x+3 & \text { if } x<-3 \\ -(x-1) & \text { if } x \geq-3\end{array}\right.$
Find: $f(-3)=\quad f(6)=$ Find: $h(0)=\quad h(-6)=\quad h(-3)=$

The difference quotient, $\frac{f(x+h)-f(x)}{h} h \neq 0$, plays an important role in understanding the rate at which a function changes.

Using the difference quotient, find and simplify

1. $f(x)=x^{2}-4 \mathrm{x}+3$
2. $f(x)=\sqrt[2]{3-x}$

Day 2

$$
f(\mathrm{x})=\left\{\begin{array}{cc}
x^{2}+1 & x<0 \\
x-1 & x \geq 0
\end{array}\right.
$$

Graph function by hand:

Graph on calculator $\quad y_{1}=\left(x^{2}+1\right)(x<0)+(x-1)(x \geq 0)$

$$
\mathrm{Ex}: f(\mathrm{x})=\left\{\begin{array}{cc}
1-x^{2} & x \leq 2 \\
x & x>2
\end{array}\right.
$$

Ex: $f(\mathrm{x})=\left\{\begin{array}{cc}(x+4)^{2} & x \leq-2 \\ 2 & -2<x<0 \\ -x^{2}+2 x & x\end{array}\right.$

Determine the intervals on which the function is:

Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Find the relative maximum: \qquad

Using a calc: Find the relative max/ and or \min of $f(\mathrm{x})=2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-12 \mathrm{x}+1$ Determine the intervals on which each is increasing, decreasing, or constant.
a. $f(x)=x^{2}+4 x-12$
b. $g(x)=x^{3}+1$
c. $h(x)=x^{3}+x^{2}-x+2$
d. $p(x)=2$

Even and Odd Functions:

A graph has symmetry with respect to the y-axis if whenever (x, y) is on the graph then so is $(-x, y)$.

A graph has symmetry with respect to the origin if (x, y) is on the graph then so is $(-x,-y)$.

A graph has symmetry with respect to the x -axis if whenever (x, y) is on the graph then so is ($\mathrm{x},-\mathrm{y}$).

Even Function: A function whose graph is symmetric to the y-axis.

$$
f(-x)=f(x)
$$

Ex: $f(x)=x^{2}$
Ex: $f(x)=3 x^{2}+4 x$
Ex: $f(x)=4$
Ex: $f(x)=x^{6}-x^{3}+6 x^{2}$

Odd Function: A function whose graph is symmetric to the origin.

$$
f(-x)=-f(x)
$$

$$
\text { Ex: } f(x)=3 x^{3}+1 \quad \text { Ex: } f(x)=\frac{2}{5} x
$$

Ex: $f(x)=4 x-1$
Ex: $f(x)=x^{3}-x$
Determine whether each function is even, odd, or neither.
a. $y=x^{2}+x$
b. $y=x^{5}+x$
c. $\mathrm{y}=x \sqrt{1-x^{2}}$

Day 3

Toolkit Functions:

1. $\mathrm{y}=\mathrm{c}$
2. $\mathrm{y}=\sqrt{x}$
3. $y=a^{x}$
4. $y=x$
5. $\mathrm{y}=\mathrm{x}^{3}$
6. $y=\log _{a} x$
7. $y=x^{2}$
8. $y=1 / x$
9. $y=\sin x$
10. $\mathrm{y}=|\mathrm{x}|$
11. $y=[x]$
12. $y=\cos x$

Describe Domain \& Range

Remember $\mathrm{y}=\mathrm{a}\left(\mathrm{b}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}\right.$

$$
\begin{array}{ll}
|a|<1 & h>0 \\
|a|>1 & h<0 \\
|b|>1 & k>0 \\
|b|<1 & k<0
\end{array}
$$

Take a look at (Describe the transformations)

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=\sqrt{x+3} \\
& y=\sqrt{x}-5 \\
& y=3 \sqrt{x-4}+2 \\
& y=|x| \\
& y=|x+5| \\
& y=|x|-3 \\
& y=4|x|-5
\end{aligned}
$$

$y=x^{3}$
$y=(x-2)^{3}$
$y=x^{3}+4$
$y=1 / 2 x^{3}-6$
$y=\sin x$
$y=\sin (x+2)$
$y=\sin x-4$
$y=3 \sin (x-4)+5$
Describe transformations

$$
1: y=(x-2)^{2}+4 \quad 2: y=-|x+6|-2
$$

$$
3: y=-5 \sqrt{2 x+3}
$$

Day 4-5
$\operatorname{Sum}(f+g)(\mathrm{x})=f(\mathrm{x})+g(\mathrm{x})$
Difference $(f-g)(\mathrm{x})=f(\mathrm{x})-g(\mathrm{x})$

Combination of Functions:

Product $(f g)(\mathrm{x})=f(\mathrm{x}) \cdot g(\mathrm{x})$

$$
\text { Quotient }\left(\frac{f}{g}\right)(\mathrm{x})=\frac{f(x)}{g(x)} g(\mathrm{x}) \neq 0
$$

Given: $\quad f(x)=3 x-1$

$$
g(\mathrm{x})=\mathrm{x}^{2}+2 \mathrm{x}-24
$$

Find: $f(\mathrm{x})+g(\mathrm{x})=$

$$
f(\mathrm{x})-g(\mathrm{x})=
$$

$$
f(\mathrm{x}) \cdot g(\mathrm{x})=\quad \frac{f(x)}{g(x)}=
$$

The domain of an arithmetic combination of two functions consists of all real numbers that are common to both functions.

$$
f(x)=3 x-1 \quad g(x)=x^{2}+2 x-24
$$

Find: 1. $(f+g)(2)=$
2. $(f-g)(-3)=$
3. $f(4) \cdot g(4)=$
4. $\frac{f}{g}(-2)=$

What is the domain:?
5. $f(\mathrm{x})=\sqrt{x}$
6. $g(\mathrm{x})=\sqrt{4-x^{2}}$

Composition of Functions: The composition of the functions f with g is denoted by $f \circ g$ and is defined by the equation $(\boldsymbol{f} \circ \boldsymbol{g})(\mathbf{x})=\boldsymbol{f}(\boldsymbol{g}(\mathbf{x}))$

$$
f(x)=x^{2}-4 \quad g(x)=2 x-5
$$

1. $(f \circ g)(4)=$
2. $(g \circ f)(-2)=$
3. $(g(f(-3))=$
4. $(f(g(3))=$

The domain of the composite function $f \circ g$ is the set of all \mathbf{x} such that

1. x is in the domain of g and
2. $g(x)$ is in the domain of f .

The following values must be excluded from the input of x :

1. If x is not in the domain of g , it must not be in the domain of $f \circ g$
2. Any x for which $g(x)$ is not in the domain of f must not be in the domain of $f \circ g$

$$
f(\mathrm{x})=\sqrt{x} \quad g(\mathrm{x})=2 \mathrm{x}^{2}+3
$$

1. $(f+g)(x)$
2. $(g+f)(x)$
3. $\frac{f(x)}{g(x)}$
4. $f(x) \cdot g(x)$
5. $(f \circ g)(x)$
6. Find each of the following for $f(\mathrm{x})=\frac{2}{x-1}$ and $g(\mathrm{x})=\frac{3}{x}$.
7. $(g \circ f)(x)$

Find the domain of each.
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
2. For:

$$
f(\mathrm{x})=\mathrm{x}^{2}+3
$$

$$
g(\mathrm{x})=\sqrt{x}
$$

Domain of $(f \circ g)=$
3. For: $\quad f(x)=x^{2}-9$

$$
g(\mathrm{x})=\sqrt{9-x^{2}}
$$ Domain of $(g \circ f)(\mathrm{x})=$

4. For:

$$
f(\mathrm{x})=2 \mathrm{x}+3
$$

$$
g(\mathrm{x})=1 / 2(\mathrm{x}-3)
$$

What is $(f \circ g)(\mathrm{x})$? What is $(g \circ f)(\mathrm{x})$? What do we notice?

When you form a composite function, you "compose" two functions to form a new function. It is possible to reverse this process. You can "decompose" a given function and express it as a composition of two or more functions. Although there is more than one way to do this, there is often a "natural" selection that comes to mind. Consider $h(x)=\left(3 \mathrm{x}^{2}-4 \mathrm{x}+1\right)^{5}$.

Express the given functions h as a composition of two functions f and g so that $h(x)=(f \circ g)(x)$
a. $h(x)=\sqrt[3]{x^{2}+1}$
b. $h(x)=|3 \mathrm{x}-4|$
c. $h(x)=\frac{1}{2 x-3}$

Inverses:

Let f and g be two functions such that $f(g(x))=x$ for every x in the domain of g and $g(f(x))=x$ for every x in the domain of f .
The function g is the inverse of the function f , and is denoted by f^{-1} (read " f -inverse"). Thus, $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$. The domain of f is equal to the range of f^{-1}, and vice versa.

Find the inverse of f informally. Verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
a. $f(x)=5 x$
b. $f(x)=x^{2}$
c. $f(x)=x+2$

The graph of an inverse is the reflection of the original function over the line $y=x$.
To have an inverse function, a function must be one-to-one, which means no two elements in the domain correspond to the same element in the range of f. You can use the horizontal line test to determine if a function is one-to-one.

Algebraically find the inverse of each function. Then graph the function and the inverse.
a. $f(x)=x+3$
b. $f(x)=\frac{1}{x}$
c. $f(x)=(x+3)^{2}$
d. $f(x)=\sqrt{x+2}$

Day 6

1. Minimum and maximum values are often referred to as \qquad values.
To approximate extreme values for a function.
a. Sketch and label a diagram.
b. Write a rule(equation) for the quantity to be minimized or maximized in terms of a single variable.
c. Determine the domain for the equation.
d. With a graphing calculator, graph the equation and use the function on the calculator to approximate the desired minimum or maximum value.
e. Re-read the question and be sure to give the answer for the question that was asked.
2. Express the area A of a circle as a function of its circumference C , express C as a function of A .
3. $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is an arbitrary point on the line $x-3 y=5$.
a. Express the distance d from the origin to P as a function of the y coordinate of P .
b. Without graphing, find the minimum distance d and the point P associated with the minimum d.
c. What are the domain and range of the distance function?
4. A power station and a factory are on the opposite sides of a river 60 m wide. A cable must be run from the power station to the factory. It costs $\$ 25$ per meter to run the cable in the river and $\$ 20$ per meter on land. Use a graphing calculator to find the minimum cost.

