If f and g are continuous function on [a, b] and $g(x) \le f(x)$ for all x in [a, b], then the area of the region bounded by the graphs of f and g and the vertical line x = a and x = b is:

Area =
$$\int_{a}^{b} [f(x) - g(x)] dx$$

Ex: Find the area of the region bounded by the graphs $y = 2 - x^2$ and the line y = -x. (We must find where they intersect first)

Ex: Find the area of the region bounded by the graphs $y = 2 - x^2$ and the line y = x.

Ex: Find the area of the region bounded by the graphs $y = x^2 + 2$, y = -x, x = 0, and x = 1.

Ex: Find the area of the region bounded by the graphs $y = x^2$, x + y = 2.

Ex: Find the area of the region bounded by the graphs $y = 2\cos(x)$, $y = x^2 - 1$.

Ex: Find the area of the region bounded by the graphs $y = \cos^2(x)$, y = 1.