If f and g are continuous function on $[a, b]$ and $g(x) \leq f(x)$ for all x in $[a, b]$, then the area of the region bounded by the graphs of f and g and the vertical line $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is:

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x
$$

Ex: Find the area of the region bounded by the graphs $y=2-x^{2}$ and the line $y=-x$. (We must find where they intersect first)

Ex: Find the area of the region bounded by the graphs $y=2-x^{2}$ and the line $y=x$.

Ex: Find the area of the region bounded by the graphs $y=x^{2}+2, y=-x, \mathrm{x}=0$, and $\mathrm{x}=1$.

Ex: The sine and cosine curves intersect indefinitely many times, bounding regions of equal areas. Find the area of one of these regions.

Ex: Find the area in the first quadrant bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.

Ex: What if we integrated with respect to y ?

Ex: Find the area of the region between the graphs $y=3 x^{3}-x^{2}-10$ and $g(x)=-x^{2}+2 x$.

Ex: Find the area of the region bounded by the graphs $x=y^{2}, x=y^{3}$.

Ex: Find the area of the region bounded by the graphs $y=x^{2}, x+y=2$.

Ex: Find the area of the region bounded by the graphs $y=2 \cos (x), y=x^{2}-1$.

Ex: Find the area of the region bounded by the graphs $y=\cos ^{2}(x), y=1$.

