Precalculus Unit 1 Review Name_____

Graph the piece-wise function by hand and find the indicated values. $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$

1.
$$f(\mathbf{x}) = \begin{cases} x^2 + 1 & \text{if } x \le 1 \\ x - 2 & \text{if } 1 < x \le 4 \end{cases}$$

a. $f(-1) = & b. f(2) = \\ c. f(1) = & d. f(4) = \end{cases}$

- 2. Describe how the graph of g(x) can be obtained from the graph of $f(x) = \sqrt{x}$.
 - a. $g(x) = \frac{1}{2}\sqrt{x} 1$ b. $g(x) = -\sqrt{x-2}$ c. $g(x) = 2\sqrt{3x+12}$
- 3. Find the equation of the function whose graph can be obtained by performing the translation, 3 units left, 1 unit up, and is horizontally compressed by a factor of $\frac{1}{4}$ on the function $f(x) = x^3$. Sketch the graphs.
- 4. State the domain of the following functions:

a.
$$f(x) = x^2 + 1$$
 b. $f(x) = \sqrt{x+2}$ c. $f(x) = \frac{x}{2x-1}$ d. $f(x) = \frac{\sqrt{x}}{x-4}$

- 5. Let f(x) = x 2 and $g(x) = x^2 + 3$. Simplify. Find the domain of each. Write the domain in **interval notation**.
 - a. (f + g)(x) b. (f g)(x)

c.
$$(fg)(x)$$
 d. $\left(\frac{f}{g}\right)(x)$

6. Let f(x) = 3x - 2 and $g(x) = \sqrt{x}$ and $h(x) = \frac{\sqrt{x+2}}{x-3}$. Find the domain for a through c. Write the domain in **interval notation**.

a.
$$(f \circ g)(\mathbf{x})$$
 b. $(g \circ f)(\mathbf{x})$

c.
$$(h \circ f)(\mathbf{x})$$
 d. $(f \circ g)(9)$

7. Decide if the following functions are even, odd or neither:

a.
$$f(x) = 3x^6 - 5x^4$$
 b. $f(x) = x^2 + 2$ c. $f(x) = x^{101} + 11x$

- 8. A function, h(x), contains the following points: (-1, 2) (5, -8) (4, 6) (-3, -7)Name four points which would be a part of h(x) if the function is:
- a) symmetric to the line y = x
 b) symmetric to the x-axis
 c) symmetric to the origin
 d) symmetric to the line y = -x

9. Find the inverse of the functions algebraically. Are the inverses functions?

- a. $f(x) = 2x^2 1$ b. $f(x) = \sqrt{3x + 4}$ c. f(x) = x 1
- 10. Determine if f and g are inverses of each other. Show all work.

a.
$$f(x) = x^5$$
 and $g(x) = \sqrt[5]{x}$
b. $f(x) = x^3 - 1$ and $g(x) = \sqrt[3]{x} - 1$

11. Express the function $h(x) = \frac{1}{(x-2)^2}$ as a composition of two functions.

12. The number of bacteria in a refrigerated food is given by

$$N(T) = 20T^2 - 80T + 500, \qquad 2 \le T \le 14$$

where T is the Celsius temperature of the food. When the food is removed from refrigeration, the temperature is given by

$$T(t) = 4t + 2, \qquad 0 \le t \le 3$$

where t is the time in hours. Find the following:

- a. The composite N(T(t)). What does this function represent?
- b. The number of bacteria in the food when t = 2 hours.
- c. The time when the bacteria count reaches 2000.

- a. Find *f*(0) and *f*(-6)
- b. Is f(2) positive or negative?
- c. What are the x-intercepts of f(x)?
- d. How often does y = -1 intersect f(x)?
- e. What is *f*(*f*(5))?

- f. What is the domain of the function?
- g. What is the range of the function?
- h. For what values is f(x) > 0
- i. What interval is f(x) increasing?
- j. What interval is f(x) decreasing?
- 14. Triangle PQR has a vertex on the semicircle $y=\sqrt{16-x^2}$ and two vertices on the x-axis as shown below.

