\qquad

Graph the piece-wise function by hand and find the indicated values.

1. $f(\mathrm{x})= \begin{cases}x^{2}+1 & \text { if } \quad x \leq 1 \\ x-2 & \text { if } 1<x \leq 4\end{cases}$
a. $f(-1)=$
b. $f(2)=$
c. $f(1)=$
d. $f(4)=$
2. Describe how the graph of $g(x)$ can be obtained from the graph of $f(x)=\sqrt{x}$.
a. $g(x)=\frac{1}{2} \sqrt{x}-1$
b. $g(x)=-\sqrt{x-2}$
c. $g(x)=2 \sqrt{3 x+12}$
3. Find the equation of the function whose graph can be obtained by performing the translation, 3 units left, 1 unit up, and is horizontally compressed by a factor of $1 / 4$ on the function $f(x)=x^{3}$. Sketch the graphs.
4. State the domain of the following functions:
a. $f(\mathrm{x})=\mathrm{x}^{2}+1$
b. $f(x)=\sqrt{x+2}$
c. $f(\mathrm{x})=\frac{x}{2 x-1}$
d. $f(x)=\frac{\sqrt{x}}{x-4}$
5. Let $f(x)=\mathrm{x}-2$ and $g(x)=\mathrm{x}^{2}+3$. Simplify. Find the domain of each. Write the domain in interval notation.
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $\left(\frac{f}{g}\right)(x)$
6. Let $f(x)=3 \mathrm{x}-2$ and $g(x)=\sqrt{x}$ and $h(x)=\frac{\sqrt{x+2}}{x-3}$. Find the domain for a through c . Write the domain in interval notation.
a. $(f \circ g)(\mathrm{x})$
b. $(g \circ f)(\mathrm{x})$
c. $(h \circ f)(\mathrm{x})$
d. $(f \circ g)(9)$
7. Decide if the following functions are even, odd or neither:
a. $f(x)=3 x^{6}-5 x^{4}$
b. $f(x)=x^{2}+2$
c. $\quad f(x)=x^{101}+11 x$
8. A function, $h(\mathrm{x})$, contains the following points: $(-1,2)(5,-8)(4,6)(-3,-7)$

Name four points which would be a part of $h(\mathrm{x})$ if the function is:
a) symmetric to the line $y=x$
b) symmetric to the x-axis
c) symmetric to the origin
d) symmetric to the line $y=-x$
9. Find the inverse of the functions algebraically. Are the inverses functions?
a. $f(x)=2 \mathrm{x}^{2}-1$
b. $f(x)=\sqrt{3 x+4}$
c. $f(x)=x-1$
10. Determine if f and g are inverses of each other. Show all work.
a. $f(x)=\mathrm{x}^{5}$ and $g(x)=\sqrt[5]{x}$
b. $f(x)=x^{3}-1$ and $g(x)=\sqrt[3]{x}-1$
11. Express the function $\quad h(\mathrm{x})=\frac{1}{(x-2)^{2}} \quad$ as a composition of two functions.
12. The number of bacteria in a refrigerated food is given by

$$
N(\mathrm{~T})=20 \mathrm{~T}^{2}-80 \mathrm{~T}+500, \quad 2 \leq \mathrm{T} \leq 14
$$

where T is the Celsius temperature of the food. When the food is removed from refrigeration, the temperature is given by

$$
T(\mathrm{t})=4 \mathrm{t}+2, \quad 0 \leq \mathrm{t} \leq 3
$$

where t is the time in hours. Find the following:
a. The composite $N(T(\mathrm{t}))$. What does this function represent?
b. The number of bacteria in the food when $t=2$ hours.
c. The time when the bacteria count reaches 2000 .
13.

a. Find $f(0)$ and $f(-6)$
b. Is $f(2)$ positive or negative?
c. What are the x -intercepts of $f(\mathrm{x})$?
d. How often does $\mathrm{y}=-1$ intersect $f(\mathrm{x})$?
e. What is $f(f(5))$?
f. What is the domain of the function?
g . What is the range of the function?
h. For what values is $f(x)>0$
i. What interval is $f(x)$ increasing?
j. What interval is $f(\mathrm{x})$ decreasing?
14. Triangle $P Q R$ has a vertex on the semicircle $y=\sqrt{16-x^{2}}$ and two vertices on the x-axis as shown below.

$A(x)$ that expresses the area as a function of the
x-coordinate.
of the $A(x)$?

