

AFM Unit 7 Probability Review

- 1. How many subcommittees of 2 Democrats and 3 Republicans can be formed from a committee whose membership is 6 Democrats and 8 Republicans? 6 2 8 3 (15)(56) = 840
- 2. In how many ways can 5 people be seated in a room containing 2 chairs? 5. 4 = 20

 Permutation 5P2
- 3. A quality control engineer must inspect a sample of 3 fuses from a box of 100. How many different samples can he choose?
- 4. How many numbers of three or fewer digits can be formed from the digits 2, 3, 4, 5, and 6? Assume there is no repetition of digits.
- 5. How many three-digit numbers can be formed from the digits 2, 3, 4, 5, & 6 if repetitions are allowed?
- 6. A witness to a holdup reports that the license of the getaway car consisted of 6 different digits. He remembers the first three but has forgotten the rest. How many licenses do the police have to check?

7.	In how many ways can the letters from the word television be arranged?
	10 letters
	ae's, 2'1's

$$\frac{10!}{2!2!} = 907,200$$

9. A clown has 8 balloons, each a different color. There are 6 children. How many ways can the clown give each child a order malters 8.7.6.5.4.3 = 20,160 balloon?

10. How many 9-member baseball teams can be formed from 15 players if only 3 pitch while the others play the 12 Regiplayers 3 pitchors remaining 8 positions?

remaining 8 positions?

$$12 \text{ Reg. Players} \quad 3 \text{ pithors}$$
 $12 \text{ Reg. Players} \quad 3 \text{ pithors}$

11. A photographer is taking a picture of a bride and a groom together with 6 attendants. How many ways can he arranged the 8 people in a line if the bride and groom stand in the middle? 6 - 5 · 4 2 1 · 3 · 2 · 1

12. Two dice are rolled. What is the probability that their sum is 6 or 8?

$$P(sum 6) = \frac{5}{36}$$
 $P(sum 6) = \frac{5}{36}$
 $P(sum 6) = \frac{5}{36} = \frac{10}{36} = \frac{5}{18}$

getting:

both red;
$$\frac{4^{2}}{6^{2}} = \frac{6}{15} = \boxed{2}$$

one of each color?

feach color?
$$\frac{4(1.2)}{62} = \frac{8}{15}$$

- 14. A committee of 5 is selected from a group of 9 people (6 women and 3 men). What is the probability that it will $\frac{\text{men?}}{900} = \frac{60}{300} = \frac{10}{31}$ have exactly 3 women and 2 men? 3w2m
- 15. Find the probability of drawing two aces from a deck of cards if the first card is not replaced before the second is P(2 Aces) 4(2 - 6 - 1326 - 221 drawn.
- 16. A box contains 10 red, 8 green, and 12 blue tickets. Two successive tickets are drawn without replacement. Find the probability of drawing (without regard to order):
 - a) one blue and one green ticket

(a)

b)
$$\frac{10^{2}}{30^{2}} = \frac{3}{39}$$

$$\frac{435}{435} - \frac{282}{435} = \frac{153}{435} = \frac{51}{145}$$

- 18. A coin is tossed 4 times. Find the probability of getting the same number of heads and tails.

 19. A coin is tossed 4 times. Find the probability of getting the same number of heads and tails.

 19. A coin is tossed 4 times. Find the probability of getting the same number of heads and tails.

 19. A coin is tossed 4 times. Find the probability of getting the same number of heads and tails.
- 19. A coin is flipped eight times. Find the probability of getting exactly six heads. V = 0
- 20. Assume that $\frac{3}{4}$ of all drivers use seat belts on long trips. If $\frac{4}{5}$ cars are checked on the highway, find the probability that seat belts are used by **at most** two drivers. $N=\frac{1}{5}$
- 21. There are 6 women and 7 men on the committee for city park enhancement. A subcommittee of 5 members is being selected at random to study the feasibility of redoing the landscaping in one of the parks. What is the probability that the committee will have at least 3 women?

$$3Wam$$
 or $4W1m$ or $5W$
 $6C_{3}\cdot 7C_{2} + (C_{4}\cdot 7C_{1} + 6C_{5}) = \frac{531}{1287} = \frac{59}{143}$

- 22. In his pocket, Ben has 5 dimes, 6 nickels, and 4 pennies. He selects 3 coins. What is the probability that he selects exactly dimes and 1 penny? $\frac{5C_2 \cdot 4C_1}{15C_3} = \frac{40}{455} = \frac{8}{41}$
 - 23. How many ways can 8 charms be arranged on a bracelet with no clasp if 3 of the charms are identical?
 - 24. A college library has three math books, 4 social science books and 3 biology books displayed on a shelf. In how many ways can the 10 books be arranged on the shelf if books on the same subject matter are together?

- 25. One card is drawn at random from a standard deck. What is the probability of drawing an ace or a red card? $\frac{4+26-2}{2} = \frac{28}{5} = \frac{7}{13}$
- 26. Determine if the following is a fair game: Two dice are rolled. If the sum is less than 7, then player A wins \$5 from player B; otherwise, B wins \$4 from A.

	50m < 7	Sum Z 7
A	5	7
Pap	15/36	21/16

expected value:
$$5\left(\frac{15}{36}\right) - 4\left(\frac{21}{36}\right) = -\frac{9}{36} = -\frac{1}{36} = -25$$
Not Fair (should be zero)

27. Kay Paso, who is 3 years old, tears the labels off all 10 of the soup cans on her mother's shelf. Her mother known				f. Her mother knows				
	that there	e were 2 c	ans of tomatos	oup an	d 8 cans of vege	table s	oup. She selects 4 cans at ra	andom. What is the
	probabili	ty that exa	octly one of the	cans is	tomato? 3V	IT	$\frac{8^{3} \cdot 2^{1}}{} =$	112 - 8/
							10 < 4	2(0
28.	A coin is t	ossed thre	e times. What	is the p	robability that <u>r</u>	not all t	three tosses are the same?	1 - P(same)
	(a)	<u>1</u> 8	(b)	3 8	(c)	$\frac{1}{4}$	(d) $\frac{3}{4}$	1-(HHH ORTT)

$$-\left(\frac{1}{8}+\frac{1}{8}\right)=\left(-\frac{2}{8}\right)$$

- 29. Five cards are dealt from a deck of 52 cards. Which of the following shows the probability that 4 aces will be dealt?

- (a) $\frac{{}_{4}C_{4}}{{}_{12}C_{5}}$ (b) $\frac{{}_{52}C_{4}}{{}_{52}C_{5}}$ (c) $\frac{{}_{4}C_{4}{}_{48}C_{1}}{{}_{52}C_{5}}$ (d) $\frac{{}_{4}C_{4}{}_{52}C_{1}}{{}_{52}C_{5}}$
- 30. Two cards are drawn from a deck of 52 cards with the first card replaced before the second card is drawn. What is the probability that neither card is a spade?
 - (a)

- 31. A pair of dice is tossed. What is the probability that the sum of the faces showing on top is 10?
 - (a) $\frac{2}{9}$

(b) $\frac{1}{12}$

(c)

(d) $\frac{1}{6}$

1, 2, 3, 4

3. 3. 3. 3.

< h.

36 36 36

3/36

of (5,5)

36 = 1/12 36 contains higher

32. Suppose you play a game in which you make a bet and then draw a card from a standard deck of 52 cards as well as 2 jokers. If you draw a joker, you keep your bet and win \$5; If you draw a face card, you keep your bet and win \$2; and if you draw any other card, you lose your bet. What is your expected value on this game if you bet \$1?

	Joker	Face	any other
You	5	2	-
Prab.	2/4	12 54	40

< always alls to 1

expected value:
$$5\left(\frac{2}{34}\right) + 2\left(\frac{12}{54}\right) - 1\left(\frac{40}{54}\right) = \frac{-6}{54} = -\frac{1}{9}$$

you will lose an average of 114 per game