A **sequence** is an ordered list of numbers. Each number in the list is called a **term** of the sequence. The first term of a sequence is denoted as a_1 . The second term is denoted as a_2 . The term in the nth position is called the nth term and is denoted as a_n . The term before a_n is a_{n-1} .

A sequence is a function whose <u>range</u> is the <u>terms</u> of the sequence and the <u>domain</u> is the <u>position</u> of each term.

There are many types of sequences:

1) An **infinite sequence** is a sequence with an infinite number of terms. Can we come up with some examples?

Ex: 2, 4, 6, 8, 10, 12,....

Ex: 1, -3, 5, -7, 9, -11, 13

2) A **finite sequence** is a sequence with a finite number of terms. The sequence ends at a certain point.

Three sequences we will learn about:

- 3) An **Arithmetic sequence** is a sequence in which the difference between each term and the proceeding term is always constant. This difference is known as *d* and is constant term.
- 4) A **Geometric sequence** is a sequence in which terms are found by multiplying a preceding term by a non-zero constant. This term is known as *r* and is called the common ratio of a geometric sequence.
- 5) A **Recursive Sequence** is a sequence in which each term is defined using the previous terms.
- I. Write a rule for the nth term for the following examples:
 - 6) Ex 1. 1, 2, 3, 4, 5, ... Ex. 2 2,4,6,8,10,... Ex. 3 2,3,4,5,6,...
 - 7) Ex. 4 5,8,11,14,... Ex. 5 1,3,5,7,9,... Ex. 6 $\frac{2}{5}, \frac{2}{25}, \frac{2}{125}, \frac{2}{625}$...
- II. List the first four terms of the sequence given by

Ex:
$$a_n = 4n - 3$$
 Ex: $a_n = \frac{(-1)^n}{2n - 1}$ Ex: $a_n = 7(3^{-n})$

Arithmetic sequences:

The sequence $a_1, a_2, a_3, a_4, \dots a_n$ is arithmetic if there is a number d such that:

 $a_2 - a_1 = d$ $a_3 - a_2 = d$ Where d is the common difference.

Ex: 6, 9, 12, 15, \dots 3n + 3 The common difference is 3 because 9 - 6 = 3. d = 3

Ex: 2, -3, -8, -13, ..., 5n + 7 The common difference is -5 because -3-2 = -5. d = -5

Explicit Formula: a formula that defines the nth term.

The n^{th} term of an arithmetic sequence: $a_n = dn + c$

Is the form for the nth term of an arithmetic sequence. Where d is the common difference and $c = a_1 - d$ (The first term minus the common difference).

Your book represents this differently $(a_n = a_1 + (n-1)d$ or $a_n = a_{n-1} + d$)

Ex: Find a formula of an arithmetic sequence whose common difference is 4 and whose first term is 3.

 $a_n = dn + c$ We know d = 4. $a_1 = 3$. So c = 3 - 4. c = -1

 $a_n = 4n - 1$. The terms of this sequence are: 3, 7, 11, 15, ..., 4n - 1.

Ex: Find the formula of the arithmetic sequence whose first term is 3 and whose second term is -1.

 $a_n = dn + c$ We know $a_1 = 3$ and $a_2 = -1$. So d = -4. c must be 3-(-4) = 7

$$a_n = -4n + 7$$

I. Write a rule for the nth term for the following examples:

- Ex: 2,4,6,8,10,... Ex: $\frac{2}{5}, \frac{9}{10}, \frac{7}{5}, \frac{19}{10}$... Ex: 4,8,12,16,...
- Ex 1: The fifth term of an arithmetic sequence is 25 and the 12th term is 60. Write the first several terms of this sequence.

 $\begin{array}{ll} a_5=25 & a_{12}=60 \\ a_{12}=a_5+7d & Where \ 7 \ is \ the \ difference \ in \ the \ term \ numbers. \\ 60=25+7d \\ 35=7d \\ 5=d \end{array}$

Since $a_5 = 25$ we can subtract 5 to get each term in the sequence down to the first. 5, 10, 15, 20, 25

Ex 2: Find the eighth term of an arithmetic sequence that begins with 1 and 7. d = 7 - 1 = 6

Method 1: Write out the first 8 terms. 1, 7, 13, 19, 25, 31, 37, 43

Method 2: Find the nth term by finding c. $a_n = dn + c$ $c = a_1 - d$ c = 1 - 6 or -5 $a_n = 6n - 5$ So $a_8 - 6(8) - 5 = 43$

Ex 3: Find a rule for the nth term and fill in the missing terms.

____, <u>4__</u>, ____, <u>22_</u>, ____

Ex 4: $a_7 = 34$ $a_{18} = 122$ Write a rule for the nth term.

Arithmetic means: the terms between any two nonconsecutive terms of an arithmetic sequence.

The terms between 2 given terms of an arithmetic sequence are called *arithmetic means*.

 10, 13, 16, 19, 22
 10, 14, 18, 22

 3 arithmetic means
 2 arithmetic means

Ex 5. Insert 4 arithmetic means between 15 and 50.

15, ____, ____, 50

Ex 6: Form an arithmetic sequence that has six arithmetic means between -12 & 23.

Summation Notation: the sum of a sequence is also known as an Arithmetic Series.

$$\sum_{k=1}^{m} c_{k} = c_{1} + c_{2} + c_{3} + \ldots + c_{m}$$

Sigma Notation: the sum of the first n terms of a sequence (called a series)

Ex:
$$\sum_{i=2}^{5} 4i$$
 Ex: $\sum_{k=3}^{8} (4-k)$

Partial Sums of an Arithmetic Sequence:

$$\mathbf{S_n} = \frac{n}{2}(a_1 + a_n)$$
 This means that we add the first and last terms, then multiply by the number of terms divided by 2.

Ex: Find the sum of 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20.

We know that this is an arithmetic sequence because d = 2 and there are 10 terms.

$$n = 10$$
, $a_1 = 2$ and $a_n = 20$

$$S_n = \frac{10}{2} (2 + 20) = 5(22) = 110$$

Gauss: asked to add number from 1 to 100 in 3rd grade.

$$1+2+3+4+5+... + 98+99+100$$

 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101
 101

Ex: Find the sum of the integers from 1 to 500.

$$S_n = \frac{n}{2}(a_1 + a_n)$$
 n = 500, $a_1 = 1$ and $a_n = 500$
 $S_n = \frac{500}{2}(1 + 500) = 250(501) = 125, 250$

Ex: Find the sum of the first 200 terms of the arithmetic sequence: 3, 7, 11, 15.....

$$S_n = \frac{n}{2}(a_1 + a_n)$$
 n = 200, $a_1 = 3$, $a_n = ?$, and $d = 4$

1) Find a_n $a_n = dn + c$ $a_n = 4n + -1$ Where c = 3 - 4 = -1

2) Find the 200th term $a_{200} = 4(200) - 1 = 800 - 1 = 799$ 3) Find S_n $S_n = \frac{200}{2}(3+799) = 100 (802) = 80, 200$

Ex: Find the sum of the arithmetic series where $a_1 = -111$, d = 3, and $a_n = 9$

Ex: Find the first three terms of the arithmetic series where $a_1 = 10$, $a_n = -46$, and $S_n = -522$.

Recursive Sequences: A formula for a sequence that gives the value of a term t_n in terms of the preceding term t_{n-1} . The first term is represented by t_1 , the second term in represented by t_2 , the third term in represented by t_3 , and so forth.

Ex: Find the eighth term of an arithmetic sequence that begins with 1 and 7.

Find the next three terms in each sequence.

c. 0, 3, 7, 12, 18, ... d.
$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$$

Ex: If $t_1 = 22$ & $t_n = t_{n-1} - 3$, find the next three terms.

Ex: If $t_1 = 3$ and $t_n = t_{n-1} + 4$, find the next five terms in the sequence.

Ex: If $t_1 = 64$ and $t_n = \frac{1}{2}t_{n-1}$, find the next four terms.

- Ex: The winner of a contest received \$200 the first year, with a 25% increase over the preceding year's payment for each subsequent year. How much did the contest winner receive during the first 10 years of payments?
- Ex: The owners of a certain store reduce the price of their items at the end of each week. If the original price of a blouse is \$250 and its price each week is 4/5 of the previous week, what will be the price of the blouse at the end of the 10th week?

Geometric Sequence: the <u>ratio</u> of any term to the previous term is <u>constant</u>.

r = common ratio

Ex:
$$a_n = 2^n \quad 2,4,8,16...$$
 Ex: $a_n = \left(\frac{-1}{4}\right)^4 \quad \frac{-1}{4}, \frac{1}{16}, \frac{-1}{64}, \frac{1}{256}.$

Finding the nth term of a geometric sequence:

 $a_{n} = a_{1} r^{n-1}$

- Ex: Find the first 5 terms of the geometric sequence whose first term is $a_1 = 4$ and whose ratio is r = 3.
- Ex: Find the 18th term of the geometric sequence whose first term is 20 and whose common ratio is 1.4.
- Ex: Write a rule for the n^{th} term. $-8, -12, -18, -27, \dots$
- Ex: $a_4 = 3$, r = 3. Write a rule for the nth term.

Geometric Means: the terms between any two nonconsecutive terms of a geometric sequence. Geometric Mean: $x = \sqrt{ab}$ Recall from Geometry: $\frac{x}{a} = \frac{b}{x}$

Ex: Insert 2 geometric means between 8 and 512.

Geometric series

$$\mathbf{s}_n = \mathbf{a}_1 \left(\frac{1 - r^n}{1 - r} \right)$$

r = common ratio n = number of terms

works for a finite sequence

Ex: Find the sum of the first 10 terms of the geometric series $1 + 5 + 25 + 125 + 625 \dots$

Ex: Find the sum of the 1^{st} 8 terms of the geometric series where $a_1 = 8$ and $a_4 = 512$.

Ex: Given $a_n = 5 \cdot 2^{n-1}$. Find the sum of the first 8 terms.

Ex: Find
$$\sum_{n=1}^{10} 4(3)^n$$

Ex: Andrew is investing \$100 monthly in a savings account that pays an APR of 6% compounded monthly. Determine the value of the investment at the end of the year.

Infinite Series: $S = \frac{a_1}{1-r}$

r =common ratio and |r| < 1 this is when the upper limit is ∞ , this only works because r gets close to 0.

Ex: Find
$$\sum_{n=1}^{\infty} 4(.3)^n$$

The first thing we need to do with our calculators is make sure we are in **Sequence Mode**. We do this by going to MODE and changing it to SEQ.

Ex 1: In y = let nMin = 1 and u(n) = 3n + 2

Our calculators can aid us in computing sequences and sums of sequences. The SEQ feature under 2nd STAT, OPS #5 and SUM feature under 2nd STAT, Math #5 will help us.

To list the terms of an Arithmetic sequence we can use the SEQ function: SEQ(expression,variable,begin,end,increment) =

Ex 2:
$$\sum_{n=1}^{8} 5 - 3n$$

To use this feature type in SUM(SEQ(equation, index, start #, stop #, by 1)

Ex 3:
$$\sum_{n=1}^{50} 7 - 3n$$
 SUM(SEQ(7 - 3*n*,*n*,1,50,1) = _____
Ex 4: $\sum_{n=50}^{75} n^2$ _____ = ____

Ex 5: Find the sum of the first 200 terms of the arithmetic sequence 3,7,11,15

Ex 6: A business makes a \$10,000 profit during its first year. If the yearly profit increases by \$7500 in each subsequent year, what will the profit be in the tenth year? What will be the total profit for the first ten years?

Limit: the y-value as x approaches a certain number from both sides.

$$\lim_{x \to c} f(x) = L$$

Ex: Continuous Graphs:

 $\lim_{x \to 3} (2x - 4)$ means "the limit" of 2x - 4 as x approaches 3

Enter it in the calculator and look at the table around 3 It gets closer to 2 as x gets closer to 3.

You can find this by direct substitution: f(3) = 2(3) - 4 on continuous graphs.

Ex: Graphs with a discontinuity (a hole).

$$\lim_{x \to 1} \frac{x^3 - x^2 + x + 3}{x + 1}$$
 you can't do direct substitution here because you'd get 0 in
the denominator.

Enter it into calculator and look at table \rightarrow gets closer to 2 as x approaches 1.

f(x) does not have to exist at the point for it to have a limit.

Ex: Finding limits from a graph

$$f(\mathbf{x}) = \begin{cases} 2x & \text{if } x \neq 1 \\ 0 & \text{if } x = 1 \end{cases}$$

 $y_1 = (2x) (x > 1) + (2x)(x < 1)$ Inequalities are found using 2nd MATH

Can graph using a calculator by

Find the $\lim_{x \to 1} f(x)$

The limit is still 2, because as x gets closer to one, the y-value approaches 2, regardless of the fact that at x = 1, y = 0.

Limits that don't exist: (3 conditions)

1. The limit must approach the same value from both sides, or it does not exist.

Ex:
$$\lim_{x \to 0} \frac{|2x|}{2x}$$

2. The limit does not approach 1 number, it goes up endlessly, so it does not exist.

Ex: What about

3. Oscillating graph

$$\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$$

Direct substitution is the easiest way to find limits, and it will work on any **continuous** graph that does not fit the conditions above.

Direct substitution works on non-continuous graphs if you are finding the limit as x approaches a number that is not the "hole".

Ex:
$$\lim_{x \to 4} \frac{x^2 - 3x + 2}{x - 8}$$

Techniques for Evaluating Limits:

Direct Substitution:

Ex 1.
$$\lim_{x \to 2} x^2 - 2x + 3$$
 Ex 2. $\lim_{x \to 2} \frac{x^2 - x + 2}{x + 3}$ Ex 3. $\lim_{x \to 0} \cos x$

You would not be able to do the 2nd example if it asked for $\lim_{x \to -3}$ because the denominator would be 0.

Cancellation Method: For rational functions whose denominator and numerator would be zeros by direct substitution.

Factor and cancel common factors! Then use Direct Substitution

Ex1.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x - 3}$$
 Ex2. $\lim_{x \to -2} \frac{2x^2 - x - 10}{x + 2}$

DNE because it is impossible to pick one value between -1 and 1

Rationalization Method: when the cancellation method doesn't work, multiply by the conjugate.

Multiply by the conjugate! Simplify Then use Direct Substitution

Ex1.
$$\lim_{x \to -3} \frac{\sqrt{x+7}-2}{x+3}$$
 Ex2. $\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$

Approximating a Limit: for functions where you can not cancel, rationalize or do direct substitution.

Enter f(x) into TI-83 Hit Trace and arrow left and right of the limit Average the 2 y-values

Ex1.
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}}}{(-.2128, 3.0783)} \approx \frac{3.0783 + 2.4760}{2} \approx 2.7771$$

Properties of Limits:

Let b and c be real numbers and let n be a positive integer.

a.
$$\lim_{x \to c} B = B$$

b.
$$\lim_{x \to c} x = c$$

c.
$$\lim_{x \to c} x^n = c^n$$

d.
$$\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c} \text{ for n even and } c > 0$$

Operations with Limits:

Let b, c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$$\lim_{x \to c} f(x) = L \text{ and } \lim_{x \to c} g(x) = K$$

a. Scalar multiple:
$$\lim_{x \to c} \left[bf(x) \right] = bL$$

b. Sum or Difference:
$$\lim_{x \to c} \left[f(x) \pm g(x) \right] = L \pm K$$

c. Product:
$$\lim_{x \to c} f(x) \bullet g(x) = LK$$

d. Quotient:
$$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{L}{K} \text{ provided } K \neq 0$$

e. Power: $\lim_{x \to c} \left[f(x)^n \right] = L^n$

Ex: If $\lim_{x \to c} f(x) = 3$ and $\lim_{x \to c} g(x) = -2$ find each of the following:

a.
$$\lim_{x \to c} [f(x)g(x)]^2 =$$
 b. $\lim_{x \to c} [6f(x)g(x)] =$

b.
$$\lim_{x \to c} \frac{5g(x)}{4f(x)} =$$
 d. $\lim_{x \to c} \frac{1}{\sqrt{f(x)}} =$

Ex: If
$$f(x) = x^2 - 3x + 4$$

$$g(x) = 2x - 5$$

$$\lim_{x \to 2} \left[f(x) + g(x) \right] =$$

Limit of a Difference Quotient:

Find $\lim_{x \to 0} \frac{f(x+h) - f(x)}{h}$ for each of the following functions.

- a. f(x) = x + 2 b. $g(x) = x^2$
- c. $f(x) = x^2 + 3$ d. $g(x) = x^4$