Date: _

1. If the graph of the equation $2x^2 - y^2 = 8$ passes through point (6, k), find the positive value of k.

Name:

2. The accompanying diagram shows the elliptical orbit of a planet. The foci of the elliptical orbit are F_1 and F_2 .

If a, b, and c are all positive and $a \neq b \neq c$, which equation could represent the path of the planet?

А.	$ax^2 - by^2 = c^2$	B.	$ax^2 + by^2 = c^2$
C.	$y = ax^2 + c^2$	D.	$x^2 + y^2 = c^2$

3. The accompanying diagram shows the construction of a model of an elliptical orbit of a planet traveling around a star. Point *P* and the center of the star represent the foci of the orbit.

Which equation could represent the relation shown?

4. A designer who is planning to install an elliptical mirror is laying out the design on a coordinate grid. Which equation could represent the elliptical mirror?

A.
$$x^2 = 144 + 36y^2$$

B. $x^2 + y^2 = 144$
C. $x^2 + 4y^2 = 144$
D. $y = 4y^2 + 144$

- 5. An object orbiting a planet travels in a path represented by the equation $3(y + 1)^2 + 5(x + 4)^2 = 15$. In which type of pattern does the object travel?
 - A. hyperbola B. ellipse C. circle D. parabola
- 6. Which is an equation of the circle whose center is (0, 4) and whose radius is 3?

A.
$$x^2 + (y - 4)^2 = 3$$

B. $x^2 + (y - 4)^2 = 9$
C. $(x - 4)^2 + (y - 3)^2 = 0$
D. $(x - 4)^2 + y^2 = 9$

- 7. Write the coordinates of the center of the circle whose equations is $(x + 7)^2 + (y 3)^2 = 25$.
- 8. The value of 2(arcsin 1) is

A. 0 B. $\frac{1}{2}$ C. π D. $\frac{\pi}{2}$

- 9. Find the value of $\arcsin\left(\frac{1}{2}\right) + \arccos\left(\frac{\sqrt{2}}{2}\right)$.
- 10. The value of $\arcsin(\frac{1}{2}) + \arctan(1)$ is

A. 120° B. 105° C. 90° D. 75°

11. The expression $\arccos \frac{1}{2}$ is equal to

A. 30° B. 45° C. 60° D. 90°

12. What is the value of sin(arctan 1)?

A.
$$-\frac{\sqrt{2}}{2}$$
 B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $-\frac{\sqrt{3}}{2}$

- 13. What is the value of $\cos\left(\arcsin\frac{\sqrt{3}}{2}\right)$?
- 14. Find $\tan(\arcsin\frac{5}{13})$

- 15. What is the smallest positive value of x that satisfies $x = \arccos \frac{1}{2}$?
- 16. What is the value of $\cos(\arctan\frac{\sqrt{7}}{3})$?

A. $\frac{3}{4}$ B. $\frac{3}{16}$ C. $\frac{3\sqrt{7}}{7}$ D. $\frac{\sqrt{7}}{4}$

17. The value of $\cos\left(\arctan\frac{8}{15}\right)$ is

A. $\frac{8}{17}$ B. $-\frac{8}{17}$ C. $\frac{15}{17}$ D. $\frac{\sqrt{161}}{15}$

- 18. Evaluate: $\arcsin(\cos 60^{\circ})$
- 19. What is the value of $\csc\left(\arcsin\frac{3}{4}\right)$?

A.
$$\frac{3}{4}$$
 B. $\frac{4}{3}$ C. $\frac{\sqrt{7}}{4}$ D. $\frac{4}{\sqrt{7}}$

20. In which interval of $f(x) = \cos(x)$ is the inverse also a function?

A.	$-\frac{\pi}{2} < x < \frac{\pi}{2}$	B.	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$
C.	$0 \le x \le \pi$	D.	$\frac{\pi}{2} \le x \le \frac{3\pi}{2}$

21. The expression $\sin 240^{\circ}$ is equivalent to

A.
$$\sin 60^{\circ}$$
 B. $\cos 60^{\circ}$ C. $-\sin 60^{\circ}$ D. $-\cos 60^{\circ}$

22. $\cos 280^{\circ}$ is equivalent to

A. $-\sin 80^{\circ}$ B. $-\cos 80^{\circ}$ C. $\cos 10^{\circ}$ D. $\cos 80^{\circ}$

23. Which expression is equivalent to $\sin 200^{\circ}$?

A. $-\sin 20^{\circ}$ B. $\cos 20^{\circ}$ C. $\cos 70^{\circ}$ D. $-\sin 70^{\circ}$

- 24. Express $sin(-230^{\circ})$ as a function of a positive acute angle.
- 25. The expression $\cos 40^{\circ} \cos 10^{\circ} + \sin 40^{\circ} \sin 10^{\circ}$ is equivalent to A. $\cos 30^{\circ}$ B. $\cos 50^{\circ}$ C. $\sin 30^{\circ}$ D. $\sin 50^{\circ}$
- 26. Express $\sin 150^{\circ}$ as a function of a positive acute angle.
- 27. If $\sin A = \frac{4}{5}$, $\tan B = \frac{5}{12}$, and *A* and *B* are first quadrant angles, what is the value of $\sin(A + B)$?

A. $\frac{63}{65}$ B. $-\frac{33}{65}$ C. $\frac{33}{65}$ D. $-\frac{63}{65}$

- 28. If $\cos x = \frac{12}{13}$ and $\sin y = \frac{4}{5}$, then $\sin(x y)$ equals
 - A. $\frac{72}{65}$ B. $\frac{56}{65}$ C. $-\frac{16}{65}$ D. $-\frac{33}{65}$
- 29. If $\tan A = \frac{2}{3}$ and $\tan B = \frac{1}{2}$, what is the value of $\tan (A + B)$?

A.
$$\frac{1}{8}$$
 B. $\frac{7}{8}$ C. $\frac{1}{4}$ D. $\frac{7}{4}$

30. If $\sin A = \frac{4}{5}$, $\tan B = \frac{5}{12}$, and angles A and B are in Quadrant I, what is the value of $\sin(A + B)$?

A. $\frac{63}{65}$ B. $-\frac{63}{65}$ C. $\frac{33}{65}$ D. $-\frac{33}{65}$

- 31. If θ is a positive acute angle and $\sin 2\theta = \frac{\sqrt{3}}{2}$, then $(\cos \theta + \sin \theta)^2$ equals
 - A. 1 B. $1 + \frac{\sqrt{3}}{2}$ C. 30° D. 60°
- 32. The value of $\cos 64^{\circ} \cos 26^{\circ} \sin 64^{\circ} \sin 26^{\circ}$ is

A. 1 B. $\frac{1}{2}$ C. $\frac{\sqrt{3}}{2}$ D. 0

- 33. Evaluate: $\sin 300^{\circ} \cos 90^{\circ} + \cos 300^{\circ} \sin 90^{\circ}$
- 34. The expression $\sin 50^{\circ} \cos 40^{\circ} + \cos 50^{\circ} \sin 40^{\circ}$ is equivalent to A. $\sin 10^{\circ}$ B. $\cos 10^{\circ}$ C. $\sin 90^{\circ}$ D. $\cos 90^{\circ}$
- 35. The expression $2\sin 30^{\circ}\cos 30^{\circ}$ has the same value as

A. $\sin 15^{\circ}$ B. $\cos 60^{\circ}$ C. $\sin 60^{\circ}$ D. $\cos 15^{\circ}$

- 36. If $\sin A = \frac{2}{3}$, find $\cos 2A$.
- 37. If $\cos \theta = \frac{1}{8}$, the positive value of $\sin \frac{\theta}{2}$ is
 - A. $\frac{3}{2}$ B. $\frac{\sqrt{7}}{4}$ C. $\frac{9}{16}$ D. $\frac{3}{4}$
- 38. If $\sin \theta = \frac{\sqrt{5}}{3}$, then $\cos 2\theta$ equals

A. $\frac{1}{3}$ B. $-\frac{1}{3}$ C. $\frac{1}{9}$ D. $-\frac{1}{9}$

39. If x is a positive acute angle and $\sin x = \frac{1}{2}$, what is $\sin 2x$?

A. $\frac{-1}{2}$ B. $\frac{1}{2}$ C. $-\frac{\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{2}$

40.	The expression $\frac{\sec \theta}{\csc \theta}$ is equivalent to	50. The expression $\sin 2A - 2\sin A$ is equivalent to
	$\sin\theta = \cos\theta$	A. $(\sin A)(\sin A - 2)$ B. $(2 \sin A)(\sin A - 1)$
	A. $\sin \theta$ B. $\cos \theta$ C. $\frac{\sin \theta}{\cos \theta}$ D. $\frac{\cos \theta}{\sin \theta}$	C. $(\sin A)(2\cos A - 1)$ D. $(2\sin A)(\cos A - 1)$
41.	The expression $\cos (\pi - x)$ is equivalent to	51. What is the amplitude of the graph of the equation $y = 2 \cos 3x$?
	A. $\sin x$ B. $-\sin x$ C. $\cos x$ D. $-\cos x$	A. $\frac{2\pi}{3}$ B. 2 C. 3 D. 6π
42.	The expression $\frac{\sin^2 x + \cos^2 x}{\sin x}$ is equivalent to	52. What is the period of the graph of the equation $y = 3 \cos 2x$?
	A. $\csc x$ B. $\sec x$	A. π B. 2 C. 3 D. 2π
	C. $\sin x \cot x$ D. $\sin x \cos x \cot x$	53. What is the maximum value of y for the equation $y = 1 + 3 \sin x$?
43.	The expression $\cos y(\csc y - \sec y)$ is equivalent to	A. 1 B. 2 C. 3 D. 4
	A. $\cot y - 1$ B. $\tan y - 1$ C. $1 - \tan y$ D. $-\cos y$	54. What is the range of the function $y = 3 \sin x$?
44	The expression $\frac{1}{1-\cos A} + \frac{1}{1+\cos A}$ is equivalent to	A. $y \ge 0$ B. $-1 \le y \le 1$
	$1 - \cos A + 1 + \cos A$	C. $y \le 3$ D. $-3 \le y \le 3$
	A. $\frac{2}{1 - \cos A}$ B. $\frac{2}{1 - \cos^2 A}$	
	C. $\frac{2}{1 + \cos A}$ D. $\frac{2 \cos A}{1 - \cos^2 A}$	55. The graph of which equation has the same amplitude as the graph of the equation $y = 2 \cos x$?
		A. $y = \sin 2x$ B. $y = \frac{1}{2}\cos 2x$
45.	The expression $\frac{\cos^2 x + \sin^2 x}{\sin x}$ is equivalent to	C. $y = 2 \tan x$ D. $y = 2 \sin x$
	A. $\sin x$ B. $\cos x$ C. $\sec x$ D. $\csc x$	56. Which of the statements below are true about the graph of $y = \cos \theta$?
46.	The expression $(1 + \cos x)(1 - \cos x)$ is equivalent to	I. Domain: all real numbers
		II. Range: $-1 \le y \le 1$
	A. 1 B. $\sec^2 x$ C. $\sin^2 x$ D. $\csc^2 x$	III. Period: 2π
47.	The expression $1 - \sec x$ is equivalent to	A. I only B. II only
	A. $-\tan x$ B. $\frac{\cos x - 1}{\cos x}$ C. $\frac{\sin x - 1}{\sin x}$ D. $\frac{\tan x}{\sec x - 1}$	C. III only D. I, II, and III
		57. Which number is <i>not</i> an element of the range of $y = \sin x$?
48.	The expression $\frac{1 + \cos 2x}{\sin 2x}$ is equivalent to	A. 1 B. 2 C1 D. 0
	A. $\tan x$ B. $\cot x$ C. $-\sin x$ D. $-\cos x$	58. A certain radio wave travels in a path represented by the equation $y = 5 \sin 2x$. What is the period of this wave?
49.	The expression $\frac{\sin 2x}{\sin(-x)}$ is equivalent to	A. 5 B. 2 C. π D. 2π
	A. $-2\sin x$ B. $2\sin x$ C. $-2\cos x$ D. $2\cos x$	

page 3

59. What is the amplitude of the function shown in the accompanying graph?

60. Which is an equation of the given graph?

C. $y = \sec x$ D. $y = \csc x$

B. $y = \arccos x$

A. $y = \arcsin x$

61. Which is an equation of the graph shown?

62. Which is the graph of the equation $y = -\sin x$?

- 63. Which is an equation of the graph shown below?
 - A. $y = \sin 2x$ B. $y = 2 \cos x$ C. $y = \cos 2x$ D. $y = 2 \sin x$

64. Which is an equation of the graph shown below?

65. Which graph represents the equation $y = \frac{1}{2} \cos x$?

66. Which equation is represented by the accompanying graph?

- 67. Which equation is represented in the accompanying graph?
 - A. $y = 2\cos 2x$ B. $y = \frac{1}{2}\cos 2x$
 - C. $y = 2\cos\frac{1}{2}x$
 - D. $y = \frac{1}{2} \cos \frac{1}{2}x$

- Which equation is represented by the graph in the accompanying 68. diagram?
 - A. $y = 3 \sin 2x$
 - B. $y = 2 \sin 3x$
 - C. $y = 3 \sin x$
 - D. $y = 2\sin 4x$

69. Which equation is represented by the graph in the accompanying diagram?

70. Which equation is represented on the accompanying graph?

C. $y = 3\cos x$

D. $y = -\sin 3x$

71. The shaded portion of the accompanying map indicates areas of night, and the unshaded portion indicates areas of daylight at a particular moment in time.

Which type of function best represents the curve that divides the area of night from the area of daylight?

- A. quadratic B. cosine
- C. tangent D. logarithmic
- 72. In physics class, Eva noticed the pattern shown in the accompanying diagram on an oscilloscope.

Which equation best represents the pattern shown on this oscilloscope?

- A. $y = \sin(\frac{1}{2}x) + 1$ B. $y = \sin x + 1$ C. $y = 2\sin x + 1$ D. $y = 2\sin(-\frac{1}{2}x) + 1$
- 73. Which equation is represented by the accompanying graph?

D. $y = \frac{1}{2}\cos x$ C. $y = \cos 2x$

74. The graphs below show the average annual precipitation received at different latitudes on Earth. Which graph is a translated cosine curve?

75. Which equation is represented by the graph below?

A. $y = \cot x$ B. $y = \csc x$ C. $y = \sec x$ D. $y = \tan x$

76. Which equation is sketched in the diagram below?

- 78. What is the total number of solutions for the equation $3 \tan^2 A + \tan A 2 = 0$ in the interval $0 \le A \le \pi$?
 - A. 1 B. 2 C. 3 D. 4
- 79. Find, to the *nearest degree*, all values of x in the interval $0^{\circ} \le x < 360^{\circ}$ that satisfy the equation $2 \tan^2 x 5 \tan x 1 = 0$. [*Show or explain the procedure used to obtain your answer.*]
- 80. Find, to the *nearest degree*, all values of x in the interval $0^{\circ} \le x < 360^{\circ}$ that satisfy the equation $3 \cos 2x + \sin x 1 = 0$. [Show or explain the procedure used to obtain your answer.]
- 81. Find, to the *nearest degree*, all values of x in the interval $0^{\circ} \le x < 360^{\circ}$ that satisfy the equation $3 + \tan^2 x = 5 \tan x$. [Show or explain the procedure used to obtain your answer.]
- 82. Find, to the *nearest degree*, all values of x in the interval $0^{\circ} \le x < 360^{\circ}$ that satisfy the equation $6 \cos^2 x + 2 = 0$. [Show or explain the procedure used to obtain your answer.]
- 83. If $\sin 2A = \cos 3A$, then $m \angle A$ is

A. $1\frac{1}{2}$ B. 5 C. 18

84. Find to the *nearest degree*, all values of θ in the interval $0^{\circ} \le \theta < 360^{\circ}$ that satisfy the equation $2\sin^2 \theta + 2\cos \theta - 1 = 0$.

D. 36

85. What is one solution of the equation $(\sin x + \cos x)^2 = 2$?

A.
$$\frac{\pi}{4}$$
 B. $\frac{\pi}{3}$ C. $\frac{\pi}{2}$ D. 0

- 86. In $\triangle ABC$, $\sin A = \frac{1}{2}$, $\sin C = \frac{1}{3}$, and a = 12. Find the length of side *c*.
- 87. In $\triangle ABC$, cos C = -0.2, a = 8, and b = 10. Find the length of side *c*.

88. In triangle ABC, a = 5, b = 7, and c = 8. The measure of $\angle B$ is

A.
$$30^{\circ}$$
 B. 60° C. 120° D. 150°

89. In $\triangle ABC$, a = 6, b = 5, and c = 8. CosA equals

A.
$$\frac{75}{80}$$
 B. $\frac{53}{80}$ C. $-\frac{3}{80}$ D. $\frac{53}{60}$

- 90. In $\triangle ABC$, a = 6, b = 7, and $m \angle B = 30$. Find sin A.
- 91. In $\triangle DEF$ if $d = \sqrt{3}$, e = 4, and $m \angle F = 30$, the length of f is
 - A. 7 B. $\sqrt{17}$ C. $\sqrt{7}$ D. $\sqrt{3}$
- 92. In $\triangle ABC$, $m \angle C = 30$ and a = 24. If the area of the triangle is 42, what is the length of side b?
- 93. In $\triangle ABC$, AC = 18, BC = 10, and $\cos C = \frac{1}{2}$. Find the area of $\triangle ABC$ to the nearest tenth of a square unit.
- 94. The accompanying diagram shows a triangular plot of land located in Moira's garden.

Find the area of the plot of land, and round your answer to the *nearest hundred square feet*.

95. Jack is planting a triangular rose garden. The lengths of two sides of the plot are 8 feet and 12 feet, and the angle between them is 87°. Which expression could be used to find the area of this garden?

A.	$8 \cdot 12 \cdot \sin 87^{\circ}$	В.	$8 \cdot 12 \cdot \cos 87^{\circ}$
C.	$\frac{1}{2} \cdot 8 \cdot 12 \cdot \cos 87^{\circ} 12$	D.	$\frac{1}{2} \cdot 8 \cdot 12 \cdot \sin 87^{\circ}12$

96. The accompanying diagram shows a resultant force vector, R.

Which diagram best represents the pair of component force vectors, A and B, that combined to produce the resultant force vector R?

97. In the accompanying diagram, the slope of the ascent of an aircraft is $\frac{7}{50}$. Find $m \angle x$, the angle of elevation, to the nearest degree.

98. A 20-foot ladder is leaning against a wall. The foot of the ladder makes an angle of 58° with the ground. Find, to the *nearest foot*, the vertical distance from the top of the ladder to the ground.

- 99. Two forces of 14 and 30 act on a body forming an obtuse angle with each other. If the resultant force has a magnitude of 20, find the angle between the two forces to the *nearest degree*. [Show or explain the procedure used to obtain your answer.]
- 100. Two forces act on a body to produce a resultant force of 70 pounds. One of the forces is 50 pounds and forms an angle of $67^{\circ}40'$ with the resultant force. Find, to the *nearest pound*, the magnitude of the other force. [Show or explain the procedure used to obtain your answer.]

Problem-Attic format version 4.4.178

© 2011-2013 EducAide Software Licensed for use by Bobbie Neff Terms of Use at <u>www.problem-attic.com</u>

		Precalc Review 3	05/28/2013	
1. Answer:	8		20. Answer:	С
2. Answer:	В		21. Answer:	С
3. Answer:	В		22. Answer:	D
4. Answer:	С		23. Answer:	А
5. Answer:	В		24. Answer:	$\sin 50^\circ$ or $\cos 40^\circ$
6. Answer:	В		25. Answer:	А
7. Answer:	(-7,3)		26. Answer:	$\sin 30^\circ$ or $\cos 60^\circ$
8. Answer:	С		27. Answer:	А
9. Answer:	75°		28. Answer:	D
10. Answer:	D		29. Answer:	D
11. Answer:	С		30. Answer:	А
12. Answer:	В		31. Answer:	В
13. Answer:	$\frac{1}{2}$		32. Answer:	D
14. Answer:	5		33. Answer:	$\frac{1}{2}$
15.	$\overline{12}$		34. Answer:	С
Answer: 16.	$60^{\circ} \text{ or } \frac{\pi}{3}$		35. Answer:	С
Answer: 17.	A		36. Answer:	$\frac{1}{9}$
Answer: 18.	C		37. Answer:	B
Answer: 19.	30°		38.	
Answer:	В		Answer:	D

39.		61.	
Answer:	D	Answer:	С
40. Answer:	С	62. Answer:	D
41. Answer:	D	63. Answer:	D
42.		64.	
Answer:	A	Answer:	А
43. Answer:	А	65. Answer:	D
44. Answer:	В	66. Answer:	А
45.		67.	
Answer:	D	Answer:	С
46. Answer:	С	68. Answer:	А
47. Answer:	В	69. Answer:	В
48. Answer:	В	70. Answer:	В
49.	C	71. Answer:	В
Answer: 50.	C	72.	5
S0. Answer:	D	Answer:	А
51. Answer:	В	73. Answer:	А
52. Answer:	А	74. Answer:	D
53. Answer:	D	75. Answer:	С
54.		76.	
Answer:	D	Answer:	А
55. Answer:	D	77. Answer:	D
56. Answer:	D	78. Answer:	В
57.		79.	
Answer:	В	Answer:	70, 169, 250, 349
58. Answer:	С	80. Answer:	42°, 138°, 210°, 330°
59. Answer:	В	81. Answer:	35°, 77°, 215°, 257°
60.		82.	
Answer:	A	Answer:	48, 60, 300, 312

83. Answer:	С
84. Answer:	111 and 249
85. Answer:	А
86. Answer:	8
87. Answer:	14
88. Answer:	В
89. Answer:	В
90. Answer:	<u>3</u> 7
91. Answer:	С
92. Answer:	7
93. Answer:	77.9
94. Answer:	8,200
95. Answer:	D
96. Answer:	А
97. Answer:	8
98. Answer:	17
99. Answer:	146°
100. Answer:	69