Practice with Transcendental Functions 2-17-2017 ICMAB

1. A particle moves along the x-axis so that at any time $\dagger>0$ its velocity is given by $\mathrm{v}(\mathrm{t})=\dagger \ln \dagger-\dagger$.
a. Write an expression for the acceleration of the particle.
b. For what values of t is the particle moving to the right?
c. What is the minimum velocity of the particle? Show the analysis that leads to your conclusion.
2. A particle moves along the x-axis so that its velocity \vee at any time t, for $0 \leq \dagger$ ≤ 16, is given by $v(t)=e^{2} \sin t-1$. At time $t=0$, the particle is at the origin.
a. During what intervals of time is the particle moving to the left? Give a reason for your answer.
b. Find the total distance traveled by the particle from $t=0$ to $t=4$.
c. Is there any time $t, 0 \leq t \leq 16$, at which the particle returns to the origin? Justify your answer.
3. $v(t)=-1+e^{1-t}$.
a. Find the acceleration of the particle at time $t=3$.
b. Is the speed of the particle increasing at time $t=3$? Give a reason for your answer.
c. Find all values of t at which the particle changes directions. Justify your answer.
d. Find the total distance traveled by the particle over the time interval $0 \leq \dagger \leq 3$.
4. Let f and g and their inverses f^{-1} and g^{-1} be differentiable functions and let the values of f, g, and the derivatives f^{\prime} and g^{\prime} at $x=1$ and $x=2$ be given by the table below:

x	1	2
$f(x)$	2	3
$g(x)$	2	π
$f^{\prime}(x)$	5	6
$g^{\prime}(x)$	4	7

Determine the value of each of the following:
a. The derivative of $f+g$ at $x=2$.
b. The derivative of fg at $\mathrm{x}=2$.
c. The derivative of f / g at $\mathrm{x}=2$.
d. $h^{\prime}(1)$ where $h(x)=f(g(x))$.
e. The derivative of g^{-1} at $\mathrm{x}=2$.
5. A particle moves along the x-axis with acceleration given by $a(t)=2 t-10+\frac{12}{t}$ for $t \geq 1$.
a. Write an expression for the velocity $\mathrm{v}(\mathrm{t})$, given that $\mathrm{v}(1)=9$.
b. For what values of $t, 1 \leq \dagger \leq 3$, is the velocity a maximum?

