1. Determine if the relation is a function. $\{(1,6),(-3,3),(5,-1)\}$
2. Determine the domain of the function $h(x)=\frac{7 x}{x\left(x^{2}-4\right)}$.
3. Sketch the graph of $f(x)=-|x-2|$

4. Sketch the graph of $f(x)=-[x+2]$

5. Sketch the graph of $f(x)=[x]+1$

6. Find the vertical, horizontal, and slant asymptotes, if any, for $f(x)=\frac{2 x^{3}+2 x^{2}-7 x-12}{x^{2}-x-2}$.
7. Given that one zero is -2 , find all the zeroes of $P(x)=x^{3}+11 x^{2}+38 x+40$
8. Find the number of complex roots of the equation $-x^{3}-4 x^{2}-3 x=0$.

Then find the roots and graph the related function.

9. Find the discriminant and determine the number and kind of roots for $4 x^{2}-4 x-24=0$.
10. Divide using synthetic division: $\left(x^{3}-4 x^{2}-16 x+64\right) \div(x+4)$.
11. Use the rational-root theorem to find the roots of the equation $24 x^{3}+14 x^{2}-x-1=0$.
12. Find all the zeros of the function for $f(x)=6 x^{4}+5 x^{3}-12 x^{2}-5 x+6$.
13. Convert 30° to radians.
14. Convert $\frac{5}{6} \pi$ to degrees.
15. Find the least positive angle measurement that is coterminal to $-\frac{4}{3} \pi$.
16. What is the reference angle for $-\frac{53 \pi}{10}$ radians?
17. For a circle of radius 4 feet, find the arc length s subtended by a central angle of 30°.
18. Find the area of a sector with a central angle of $\frac{8 \pi}{9}$ and a radius of 8.2 m . Round the answer to one decimal place.
19. Find $\sin \theta$ if θ is an angle is standard position and the point with coordinates $(4,3)$ lies on the terminal side of the angle.
20. Find $\cos \theta$ if θ is an angle in standard position and the point with coordinates $(3,-4)$ lies on the terminal side of the angle.
21. Find $\tan \theta$ if θ is an angle in standard position and the point with coordinates $(-12,5)$ lies on the terminal side of the angle.
22. Find the values of the three trigonometric functions of an angle in standard position and the point with coordinates $(2,4)$ lies on the terminal side.
23. Find the values of the three trigonometric functions of an angle in standard position if the point with coordinates $(-2,0)$ lies on the terminal side.
24. Find $\cos \left(-\frac{7}{6} \pi\right)$.
25. Use a calculator to approximate the value of $\cos \left(-113^{\circ}\right)$ to four decimal places.
26. In right triangle $\mathrm{ABC}, A=15^{\circ}$ and $c=37$. Angle C is the right angle. Solve the triangle. Round angle measures to the nearest minute and side measures to the nearest tenth.
27. In right triangle $\mathrm{ABC}, B=15^{\circ}$ and $a=13$. Angle C is the right angle. Solve the triangle. Round angle measures to the nearest minute and side measures to the nearest tenth.
28. In right triangle $\mathrm{ABC}, b=11$ and $a=18$. Angle C is the right angle. Solve the triangle. Round angle measures to the nearest minute and side measures to the nearest tenth.
29. In right triangle $\mathrm{ABC}, a=120$ and $c=140$. Angle C is the right angle. Solve the triangle. Round angle measures to the nearest minute and side measures to the nearest tenth.
30. In right triangle $\mathrm{ABC}, A=78^{\circ}$ and $c=82$. Angle C is the right angle. Solve the triangle. Round angle measures to the nearest minute and side measures to the nearest tenth.
31. How many triangles are there that satisfy the conditions $a=7, b=8, A=70^{\circ}$?
32. Solve triangle ABC given that $A=54^{\circ}, B=56^{\circ}$ and $b=73$.
33. Given a triangle with $b=5, c=9$, and $A=110^{\circ}$, what is the length of a ? Round the answer to two decimal places.
34. Find the area of the triangle with $A=98^{\circ}, b=2$ feet and $c=7$ feet.

Round your answer to two decimal places.
35. Use the graph of the cosine function below to find the values θ of for which $\cos \theta=-1$.

36. State the amplitude and period for the function $y=-5 \sin \frac{1}{5} \theta$.
37. Find a cosine function of the form $y=A \cos (B x+C), A>0$, a portion of whose graph is:

38. The function below determines the amount of yearly income tax a person must pay based on the amount of money they earn in a year.

$$
T(x)=\left\{\begin{array}{lc}
0.10 x & 0 \leq x<12,750 \\
0.07(x-12,750)+765 & 12,750 \leq x<60,000 \\
0.0775(x-60,000)+4,072.50 & x \geq 60,000
\end{array}\right.
$$

a) Describe what x and $\mathrm{T}(\mathrm{x})$ represent in the context of the problem.
b) Write the domain and range in interval notation.
c) Explain your tax rate (i.e. the \% you pay) if you make:
i) less than $\$ 12,750$ per year
ii) $\$ 12,750$ to $\$ 59,999$ per year
iii) $\$ 60,000$ per year or more

Midterm review II

1. Solve for $\mathrm{x}: 5 x^{3}+13 x^{2}-5 x+3=0$.
2. Determine the equation whose roots are 2,9 and -4 .
3. Suppose $f(x)=x^{3}-2 x^{2}+13 x+k$ The remainder when $f(\mathrm{x})$ is divided by $(\mathrm{x}+1)$ is -8 . What is the remainder when $f(\mathrm{x})$ is divided by $(\mathrm{x}-1)$?
4. Which of the following is NOT a factor of $x^{4}-3 x^{2}+1$?
A. $x+1$
B. $x-1$
C. $2 \mathrm{x}-1$
5. Write the polynomial equation of least degree for the roots $2 i,-2 i$ and -4 .
6. Find the domain for: $\quad y=\frac{2 x-1}{4 x^{2}-4 x+1}$
7. Find all asymptotes and holes for \#6.
8. Find the x and y intercepts of $y=\frac{3(x-4)(x+5)}{(x+7)(x-9)}$.
9. Find the smallest positive co-terminal angle with an angle measuring -213°.
10. Change $-62^{\circ} 11^{\prime} 45^{\prime \prime}$ to radian measure. Round answer to 4 places.
11. Change 1.24 radians to degrees. Round to 4 places.
12. Find the degree measure to the nearest tenth, of a central angle whose intercepted arc measures 16 in for a circle with radius 12 in .
13. Find the area to the nearest tenth, of a sector whose central angle measures 105° if the radius of the circle is 4.2 in .
14. Find the reference angle for an angle measuring -124°.
15. Describe the transformations in order then graph: $f(x)=-2|x+3|-4$
16. Describe the transformations in order then graph: $y=\left[\frac{1}{3} x\right]$
17. Find the amplitude, period, phase shift and vertical shift: $\quad y=-\frac{1}{3} \cos \left(\frac{1}{2} x-\frac{3}{2}\right)+5$
18. Find the amplitude, period, phase shift and vertical shift: $f(x)=4 \sin (3 x+2)$
19. Write a sine and cosine equation for the following graph:

20. The sign for a resturant is mounted on a pole. From a position 5 m from the base of the pole, Mike has to look up 42° to see the bottom of the sign, and 52° to see the top of the sign. How tall is the sign?
21. Graph on graph paper:

$$
f(x)=\left\{\begin{array}{l}
x^{2} ; \quad x<-2 \\
-2 ; \quad-2 \leq x<1 \\
x+1 ; \quad x \geq 1
\end{array}\right.
$$

