1. Write in logarithmic form: $4^{3}=64$
2. Write in exponential form: $\log _{5} 125=3$
3. Write in expanded form using the law of logarithms.

$$
\log _{2} \sqrt{\frac{m}{n}} \quad \ln \frac{x^{2}}{3 y}
$$

4. Write in condensed form (use as single log) using the law of logarithms.

$$
\frac{1}{2} \log _{2} x-2 \log _{2} 4+\log _{2} 12 y+\log _{2} w
$$

Solve and Check.
5. $\log _{x} \sqrt{6}=\frac{1}{2}$
6. $27^{1-x}=\left(\frac{1}{9}\right)^{2-x}$
7. $9^{4 x}=81$
8. $\log _{9} 7+\frac{1}{2} \log _{9} 4=\log _{9} x$
9. $\log _{2} x+\log _{2}(x-2)=3$
10. $\log _{2}\left(x^{2}+8\right)=\log _{2} x+\log _{2} 6$
11. $\log _{3}(x-4)=2$
12. $\log _{\sqrt{3}} x=4$

Solve
13. $e^{\ln 4 x}=\ln 9.4$
14. $2500=4 e^{0.58 x}$
15. If $\$ 750$ is invested at $8 \%$ annual interest that is compounded monthly when will the investment be worth $\$ 1600$ ?
16. If $\$ 50$ is invested at $8 \%$ annual interest that is compounded continuously when will the investment be worth $\$ 200$ ?
17. A certain bacteria can grow from 40 to 185 in 3.5 hours. Find the constant $k$ for the bacteria.

