\qquad
Graphical Applications of the Derivative

1. Given that f is the function defined by $f(x)=\frac{x^{3}-x}{x^{3}-4 x}$.
a. Find the $\lim _{x \rightarrow 0} f(x)$.
b. Find the zeros of f.
c. Write an equation for each vertical and each horizontal asymptote to the graph of f.

Vertical \qquad Horizontal \qquad
d. Describe the symmetry of the graph of f. Show all of your work.
e. Using the information found in parts $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d , sketch the graph of f.

2. Let f be the function defined by $f(x)=\sin ^{2}(x)-\sin (x)$ for $0 \leq x \leq \frac{3 \pi}{2}$.
a. Find the x -intercepts of the graph of f. \qquad
b. Find the intervals on which f is increasing. \qquad
c. Find the absolute maximum value and the absolute minimum value of f. Justify your answer.
d. Sketch a graph of $f(\mathrm{x})$.

3.

The figure above shows the graph of f^{\prime}, the derivative of the function f, for $-7 \leq \mathrm{x} \leq 7$.
The graph of f^{\prime} has horizontal tangent lines at $\mathbf{x}=-3, \mathbf{x}=2$, and $\mathbf{x}=5$, and a vertical tangent line at $x=3$.

Justify all of your answers!
a. Find all values of x , for $-7 \leq x \leq 7$, at which f attains a relative minimum.
b. Find all values of x , for $-7 \leq x \leq 7$, at which f attains a relative maximum.
c. Find all values of x , for $-7 \leq x \leq 7$, at which f has a point of inflection.
d. At what value of x , for $-7 \leq x \leq 7$, does f attain its absolute maximum? Justify your answer.
e. If $f(-5)=0$, make a possible sketch of $f(\mathrm{x})$.

4. This problem deals with functions defined by $f(x)=x+b \sin x$, where b is positive and constant and $[-2 \pi, 2 \pi]$.
a. Sketch the graphs of two of these functions $y=x+\sin (x)$ and $y=x+3 \sin (x)$.

b. Find the x -coordinates of all points, $[-2 \pi, 2 \pi]$, where the line $\mathrm{y}=\mathrm{x}+\mathrm{b}$ is tangent to the graph of $f(x)=x+b \sin (x)$.
c. Are the points of tangency described in part (b) relative maximum points of f ? Why?
d. For all values of $\mathrm{b}>0$, show that all inflection points of the graph of f lie on the line $\mathrm{y}=\mathrm{x}$.
5. Let h be a function defined for all $\mathrm{x} \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $\mathrm{x} \neq 0$.
a. Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
b. On what intervals, if any, is the graph of h concave up? Justify your answer.
c. Write an equation for the line tangent to the graph of h at $x=4$.
d. Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?
6. Let $f(x)=\left\{\begin{array}{cl}2 x-x^{2} & \text { if } x \leq 1 \\ x^{2}+k x+p & \text { if } x>1\end{array}\right.$
a. For what values of k and p will $f(x)$ be differentiable?
b. For the values of k and p found in part (a) above, on what interval or intervals is $f(\mathrm{x})$ increasing?
c. Using the values of k and p found in (a) above, find all points of inflection of the graph of $f(\mathrm{x})$. Support your conclusion.

