\qquad

1. Given the function f defined by $f(x)=\frac{2 x-2}{x^{2}+x-2}$
A. For what values of x is $f(\mathrm{x})$ discontinuous?
B. At each point of discontinuity found in part A determine whether $f(\mathrm{x})$ has a limit, and if so, give the value of the limit.
C. Write an equation for each vertical and horizontal asymptote to the graph of f. Justify each answer.
\qquad
\qquad
D. A rational function $g(x)=\frac{a}{b+x}$ is such that $g(\mathrm{x})=f(\mathrm{x})$ wherever f is defined. Find the values of a and b.
2. Given the function f where $f(x)=x^{2}-2 x$ for all real numbers x .
A. Sketch the graph of $\mathrm{y}=|f(\mathrm{x})|$ (4 pts)
B. Sketch the graph of $\mathrm{y}=(f(\mathrm{x}) \mid)(4 \mathrm{pts})$

C. Determine whether $|f(\mathrm{x})|$ is continuous at $\mathrm{x}=0$. Justify your answer.
3. Find all the extrema in the interval $[0,2 \pi]$ for $y=x-\cos (x)$.
4. Let p and q be real numbers and let f be the function defined by:
$f(x)=\left\{\begin{array}{cl}1+2 p(x-1)+(x-1)^{2} & \text { if } x \leq 1 \\ q x+p & \text { if } x>1\end{array}\right.$, use the definition to show if $f(\mathrm{x})$ continuous at $\mathrm{x}=1$.
A. Find the value of q , in terms of p , for which f is continuous at $\mathrm{x}=1$.
B. Find the values of p and q for which f is continuous at $\mathrm{x}=1$.
5. Given that f is the function defined $f(x)=\frac{x^{3}-x}{x^{3}-4 x}$
A. Find the $\lim _{x \rightarrow 0} f(x)=$ \qquad
B. Find the zeros of f. \qquad
C. Write an equation for each vertical and each horizontal asymptote to the graph of f.
D. Describe the symmetry of the graph of f. Show work! (4 pts.)
E. Using the information found in the previous parts, sketch the graph of f. (4 pts.)

(4 pts. each)
6. Find the limit: $\lim _{x \rightarrow-9} \frac{x^{2}+6 x-27}{x+9}$
7. Find the limit: $\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x}$
8. Find the limit: $\lim _{x \rightarrow 6^{-}} \frac{|3 x-18|}{6-x}$
9. Find the limit: $\lim _{x \rightarrow 1^{-}} \frac{-2}{x-1}$
