ICMAB Problem Set 2 Fall 2016

1. A function f is defined on the closed interval from -3 to 3 and has the graph shown below.

- a. Sketch the entire graph of y = |f(x)|.
- b. Sketch the entire graph of y = f(|x|).
- c. Sketch the entire graph of y = f(-x).
- d. Sketch the entire graph of $y = f\left(\frac{1}{2}x\right)$.
- e. Sketch the entire graph of y = f(x-1).

c.							
			, <i>'</i>	١			
			<i>y</i>				
	_						
	_						r
-	-						^
	-			-		 -	
	-						
			1				

- 2. A function f is defined for all real numbers and has the following three properties:
 - (i) f(1) = 5,
 - (ii) f(3) = 21, and
 - (iii) for all real values of a and b, $f(a + b) f(a) = kab + 2b^2$ where k is a fixed real number independent of a and b. Use a = 1 and b = 2 to find the value of k.
- 3. Given $f(x) = x^3 6x^2 + 9x$ and g(x) = 4.
 - a. Find the coordinates of the points common to the graphs of f and g.
 - b. Find all the zeros of f.
 - a. If the domain of f is limited to the closed interval [0,2], what is the range of f? Show your reasoning.
- 4. A manufacturer finds it costs him $x^2 + 5x + 7$ dollars to produce x tons of an item. At production levels above 3 tons, he must hire additional workers, and his costs increase by 3(x 3) dollars on his total production. If the price he receives is \$13 per ton regardless of how much he manufactures and if he has a plant capacity of 10 tons, what level of output maximizes his profits?

- 5. Given two functions f and g defined by $f(x) = \tan(x)$ and $g(x) = \sqrt{2} \cos x$.
 - a. Find the coordinates of the point of intersection of the graphs of f and g

in the interval $0 < x < \frac{\pi}{2}$.

6. Given the function *f* defined by
$$f(x) = \ln(x^2 - 9)$$
.

- a. Describe the symmetry of the graph of f.
- b. Find the domain of f.
- c. Find all values of x such that f(x) = 0.
- d. Write a formula for $f^{-1}(x)$, the inverse function of *f*, for x > 3.