1. A particle moves along the y-axis with velocity given by $v(t)=3 t^{2}+6 t$ for time $t \geq 0$. If the particle is at position $y=2$ at time $t=0$, what is the position of the particle at $t=1$?
(A) 4
(B) 6
(C) 9
(D) 11
(E) 12
2. If $f(x)=\cos (3 x)$, then $f^{\prime}\left(\frac{\pi}{9}\right)=$
(A) $\frac{3 \sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{\sqrt{3}}{2}$
(D) $-\frac{3}{2}$
(E) $-\frac{3 \sqrt{3}}{2}$
3. If $f(x)=\left\{\begin{array}{ll}\frac{\sqrt{2 x+5}-\sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x=2\end{array}\right.$, and if f is continuous at $x=2$, then $k=$
(A) 0
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) 1
(E) $\frac{7}{5}$
4. $\int_{0}^{8} \frac{d x}{\sqrt{1+x}}=$
(A) 1
(B) $\frac{3}{2}$
(C) 2
(D) 4
(E) 6
5. If $3 x^{2}+2 x y+y^{2}=2$, then the value of $\frac{d y}{d x}$ at $x=1$ is
(A) -2
(B)
(C) 2
(D) 4
(E) not defined
6. What is $\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h}$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) DNE
(E) Cannot be determined from info given
7. For what value of k will $x+\frac{k}{x}$ have a relative maximum at $x=-2$?
(A) -4
(B) -2
(C) 2
(D) 4
(E) None of these

8. The graph of the piecewise linear function f is shown in the figure above. If $g(x)=\int_{-2}^{x} f(t) d t$, which of the following values is greatest?
(A) $g(-3)$
(B) $g(-2)$
(C) $g(0)$
(D) $g(1)$
(E) $g(2)$
9. When the area in square units of an expanding circle is increasing twice as fast as its radius in linear units, the radius is
(A) $\frac{1}{4 \pi}$
(B) $\frac{1}{4}$
(C) $\frac{1}{\pi}$
(D) 1
(E) π
10. If $f(x)=e^{(2 / x)}$, then $f^{\prime}(x)=$
(A) $2 e^{(2 / x)} \ln x$
(B) $e^{(2 / x)}$
(C) $e^{\left(-2 / x^{2}\right)}$
(D) $-\frac{2}{x^{2}} e^{(2 / x)}$
(E) $-2 x^{2} e^{(2 / x)}$
11. (2000, AB-4) Water is pumped into an underground tank at a constant rate of 8 gallons per minute. Water leaks out of the tank at the rate of $\sqrt{t+1}$ gallons per minute, for $0 \leq t \leq 120$ minutes. At time $t=0$, the tank contains 30 gallons of water.
(a) How many gallons of water leak out of the tank from time $t=0$ to $t=3$ minutes?
(b) How many gallons of water are in the tank at time $t=3$ minutes?
(c) Write an expression for $A(t)$, the total number of gallons of water in the tank at time t.
(d) At what time t, for $0 \leq t \leq 120$, is the amount of water in the tank a maximum? Justify your answer.
12. (2000, AB/BC-5) Consider the curve given by $x y^{2}-x^{3} y=6$.
(a) Show that $\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}$.
(b) Find all the points on the curve whose x-coordinate is 1 , and write an equation for the tangent line at each of these points.
(c) Find the x-coordinate of each point on the curve where the tangent line is vertical.
