Matrix- System of rows and columns each position in a matrix has a purpose.
Element- Each value in the matrix \mathbf{a}_{23} means the element in the $2^{\text {nd }}$ row, $3^{\text {rd }}$ column

Dimensions- How many rows by number of columns
Ex: $\left[\begin{array}{ccc}5 & 6 & 3 \\ 4 & 2 & 8\end{array}\right] \quad$ Ex: $\left[\begin{array}{lll}3 & 0 & 5\end{array}\right] \quad$ Ex: $\left[\begin{array}{rcc}-6 & 2 & 4 \\ 0 & 3 & -1 \\ 3 & 4 & 5\end{array}\right]$
Identify the a_{12} element:
Name matrices with capital letters.
Row matrix- has one row Column matrix- has one column
Square matrix- same \# of rows as columns.
Equal matrices- have the same dimensions and have corresponding elements.

Solve for each variable-

Ex: $\left[\begin{array}{cc}9 & 4 x-1 \\ 12 & -2 z\end{array}\right]=\left[\begin{array}{rr}3 a & 7 \\ -3 y & -4\end{array}\right] \quad \operatorname{Ex}:\left[\begin{array}{l}2 x+y \\ x-3 y\end{array}\right]=\left[\begin{array}{l}6 \\ 31\end{array}\right]$
Addition \& Subtraction- Matrices must have same dimensions.
Ex: $\left[\begin{array}{lll}2 & 3 & 6 \\ 4 & 5 & 2\end{array}\right]+\left[\begin{array}{rrr}3 & -2 & -3 \\ 6 & -1 & 5\end{array}\right]=\operatorname{Ex}:\left[\begin{array}{rr}4 & -1 \\ 0 & 5 \\ -3 & 3\end{array}\right]-\left[\begin{array}{rr}0 & -1 \\ 2 & 4 \\ -5 & 3\end{array}\right]=$

Ex: Move Quad ABCD 3 units to the left and 5 units up ($-1,-4$), (3, -5), (2, 2), (6, -1).

Scalar multiplication- multiplying by a constant
Ex: $-2\left[\begin{array}{rrr}3 & 1 & -8 \\ -2 & 4 & 5\end{array}\right]=\quad \operatorname{Ex}: \frac{1}{2}\left[\begin{array}{rrrr}0 & 1 & 3 & 8 \\ -2 & 4 & 6 & 5\end{array}\right]=$

Ex: Enlarge $\Delta \mathrm{ABC}$ with vertices $\mathrm{A}(-1,2), \mathrm{B}(-4,-2)$ and $\mathrm{C}(3,-1)$ so that it's perimeter is twice as large as the original figure.
x-coordinate:
y -coordinate:
Day 1 Homework
Name \qquad
A. Perform the indicated operation, if possible. If not possible state the reason.

1. $\left[\begin{array}{cc}1 & -4 \\ -7 & 2\end{array}\right]+\left[\begin{array}{cc}3 & 5 \\ -5 & 2\end{array}\right]$ 2. $\left[\begin{array}{ccc}-8 & 13 & 24 \\ 1 & -6 & 0 \\ 4 & 5 & -3\end{array}\right]-\left[\begin{array}{ccc}20 & -2 & 7 \\ -11 & -5 & 9 \\ 16 & -12 & 5\end{array}\right]$ 3. $\left[\begin{array}{cc}-2 & 15 \\ 14 & -8 \\ -34 & 5\end{array}\right]+\left[\begin{array}{ccc}-9 & 12 & 31 \\ -5 & 32 & -27\end{array}\right]$
2. $\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{4} \\ 3 & 8\end{array}\right]-\left[\begin{array}{cc}2 & \frac{3}{4} \\ \frac{1}{2} & 5\end{array}\right]$
3. $-4\left[\begin{array}{llll}-1 & 3 & 18 & -7\end{array}\right]$ 6. $9\left[\begin{array}{cc}-6 & 3 \\ 0 & -12 \\ 10 & -8\end{array}\right]$
4. $\frac{1}{2}\left[\begin{array}{ccc}-2 & \frac{1}{4} & 7 \\ -\frac{6}{11} & \frac{3}{2} & -\frac{4}{5}\end{array}\right]$
5. $\left[\begin{array}{cc}12 & -8 \\ 0 & 5 \\ 0 & 3\end{array}\right]-4\left[\begin{array}{cc}-1 & 0 \\ 3 & -2 \\ -4 & 5\end{array}\right]$
6. $3\left[\begin{array}{cc}7 & -7 \\ -1 & 3\end{array}\right]-5\left[\begin{array}{ll}2 & -5 \\ 9 & -6\end{array}\right]$

Solve for x and y.
10. $\left[\begin{array}{ll}-2 x & -8 \\ -10 & -9\end{array}\right]=\left[\begin{array}{cc}6 & y \\ -10 & -9\end{array}\right]$
11. $2 x\left[\begin{array}{ll}-3 & 4 \\ -11 & 5\end{array}\right]=\left[\begin{array}{ll}12 & -16 \\ y & -20\end{array}\right]$

Use the information about 3 Major League Baseball teams' wins and losses in 1998 before and after the All-Star Game.

Before: Atlanta Braves had 59 wins and 29 losses, Seattle Mariners had 37 wins and 51 losses, and Chicago Cubs had 48 wins and 39 losses.

After: Braves had 47 wins and 27 losses, Mariners had 39 wins and 34 losses, and Cubs had 42 wins and 34 losses.
12. Use matrices to organize the information. Write a matrix that shows the total number of wins and losses for the 3 teams in 1998.

Matrix Multiplication - Day 2

1. $\left[\begin{array}{rr}2 & 4 \\ -3 & 6\end{array}\right] \cdot\left[\begin{array}{rr}1 & -3 \\ 0 & 2\end{array}\right]=\left[\begin{array}{rc}2 & 2 \\ -3 & 21\end{array}\right]$

How? 2. $\left[\begin{array}{ll}4 & 3 \\ 0 & 1 \\ 2 & 4\end{array}\right] \bullet\left[\begin{array}{llll}4 & 5 & 6 & 7 \\ 0 & 1 & 2 & 4\end{array}\right]=\left[\begin{array}{cccc}16 & 23 & 30 & 40 \\ 0 & 1 & 2 & 4 \\ 8 & 1 & 4 & 20 \\ 30\end{array}\right]$

Let's think about the dimensions first.
Your Turn: Ex: $\left[\begin{array}{rr}1 & -5 \\ 2 & 4\end{array}\right] \bullet\left[\begin{array}{rr}-2 & -3 \\ 5 & -1\end{array}\right]=[\quad]$

Ex: $\left[\begin{array}{rr}-1 & 3 \\ 4 & -2 \\ 5 & 0\end{array}\right] \cdot\left[\begin{array}{ll}-3 & 2 \\ -4 & 1\end{array}\right]=?$

Ex: $\left[\begin{array}{lll}3 & -5 & 7\end{array}\right] \cdot\left[\begin{array}{rrr}4 & 2 & -1 \\ 6 & 0 & 3 \\ -3 & -2 & -5\end{array}\right]=$

Cummutative Property

$\operatorname{Ex}:\left[\begin{array}{rr}-3 & 4 \\ 2 & 5\end{array}\right] \cdot\left[\begin{array}{lll}4 & 5 & -3 \\ 0 & 1 & -2\end{array}\right]=$

Ex: What happens when we multiply $\left[\begin{array}{lll}4 & 5 & -3 \\ 0 & 1 & -2\end{array}\right] \bullet\left[\begin{array}{rr}-3 & 4 \\ 2 & 5\end{array}\right]=$

Practice:
$\operatorname{Ex}:\left[\begin{array}{rr}1 & -3 \\ -2 & 8\end{array}\right] \bullet\left[\begin{array}{rrr}-5 & 3 & -2 \\ -1 & 4 & 5\end{array}\right]=\quad \operatorname{Ex}:\left[\begin{array}{lll}4 & 2 & -1 \\ 0 & 1 & -5\end{array}\right] \bullet\left[\begin{array}{r}-7 \\ 4 \\ 2\end{array}\right]=$

$$
\text { Ex: }\left[\begin{array}{r}
-3 \\
-4 \\
2
\end{array}\right] \cdot\left[\begin{array}{lll}
2 & 0 & -6
\end{array}\right]=\quad \text { Ex: }\left[\begin{array}{rr}
-4 & -1 \\
8 & 10
\end{array}\right] \cdot\left[\begin{array}{rr}
-1 & -3 \\
5 & -4
\end{array}\right]=
$$

\qquad

Determine the dimensions of each matrix M .

1. $A_{8 x 5} \cdot B_{5 x 3}=M$
2. $A_{9 \times 4} \bullet M=B_{9 \times 1}$
3. $M \bullet A_{1 \times 6}=B_{4 \times 6}$

Find the product of each, if possible.
4. $\left[\begin{array}{rr}-3 & 4 \\ 5 & 2\end{array}\right] \cdot\left[\begin{array}{rr}1 & 0 \\ 2 & -3\end{array}\right]$ 5. $\left[\begin{array}{rr}-3 & -1 \\ -2 & 2\end{array}\right] \bullet\left[\begin{array}{rr}5 & 0 \\ 2 & -4\end{array}\right]$ 6. $\left[\begin{array}{ll}12 & -6\end{array}\right] \cdot\left[\begin{array}{ll}-1 & 0 \\ -4 & 5\end{array}\right]$
7. $\left[\begin{array}{r}-2 \\ -6 \\ 8\end{array}\right] \bullet\left[\begin{array}{lll}2 & 0 & -1\end{array}\right]$ 8. $\left[\begin{array}{rrr}3 & -2 & 4 \\ 9 & -1 & -5\end{array}\right] \bullet\left[\begin{array}{r}-1 \\ 0 \\ -2\end{array}\right]$ 9. $\left[\begin{array}{lll}3 & 5 & -3 \\ 2 & 1 & -2\end{array}\right] \cdot\left[\begin{array}{rr}-9 & 0 \\ 1 & 5\end{array}\right]$
10. $\left[\begin{array}{rr}-2 & 0 \\ 4 & -1 \\ 3 & 0\end{array}\right] \bullet\left[\begin{array}{ll}-5 & -2 \\ -1 & -4\end{array}\right]$ 11. $\left[\begin{array}{rrr}-4 & 1 & -1 \\ 0 & 2 & 3 \\ -3 & -2 & -5\end{array}\right] \bullet\left[\begin{array}{rrr}-2 & 1 & 0 \\ 3 & -4 & -3 \\ 0 & 2 & 1\end{array}\right]$
12. $\left[\begin{array}{rr}1 & -3 \\ 2 & 0\end{array}\right] \cdot\left[\begin{array}{rr}-1 & -2 \\ 5 & -4\end{array}\right]+2\left[\begin{array}{rr}-3 & 5 \\ 0 & 4\end{array}\right]$
13. $\left[\begin{array}{ll}-1 & 4 \\ -2 & 0\end{array}\right] \bullet\left[\begin{array}{rr}-1 & -2 \\ 5 & -4\end{array}\right]-2 X=\left[\begin{array}{rr}3 & -8 \\ 0 & 4\end{array}\right]$

Determinant- square array of \#'s or variables enclosed between two parallel vertical bars. Each \# or variable is called an element.
2×2 Matrix: Rows $\rightarrow\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ value is ad - bc

Ex- $\left|\begin{array}{ll}3 & 5 \\ 2 & 6\end{array}\right|=$
Ex- $\left|\begin{array}{cc}-2 & 7 \\ 5 & 8\end{array}\right|=$

Ex- $\left|\begin{array}{cc}-2 & 8 \\ 6 & 4\end{array}\right|=$
Ex- $\left|\begin{array}{cc}\frac{2}{3} & \frac{1}{2} \\ \frac{3}{4} & \frac{-1}{4}\end{array}\right|=$
$\mathbf{3 x} 3$ Matrix: Move first two columns over and multiply diagonally like 2×2.
Another way is expansion by minors, where the minor of an element is the determinant formed when the row and column containing that element is deleted.

$$
\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right| \quad \text { Remember: }\left[\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
$$

Find the determinant of a 3×3 matrix.
Ex- $\left|\begin{array}{ccc}3 & 2 & -1 \\ 0 & 4 & 5 \\ 6 & -2 & 3\end{array}\right| \quad$ Ex- $\left|\begin{array}{ccc}-4 & -2 & -1 \\ 3 & 1 & 2 \\ 0 & 2 & -1\end{array}\right|$

Find the determinant of the matrix by using the expansion of minors.
Ex- $\left|\begin{array}{ccc}2 & 3 & -4 \\ 0 & -4 & 5 \\ -1 & -5 & 3\end{array}\right| \quad$ Ex- $\left[\begin{array}{cccc}2 & -3 & 1 & 5 \\ 3 & 0 & 1 & 0 \\ 1 & 2 & 1 & -1 \\ 1 & 3 & 3 & -2\end{array}\right]$

Inverse of a Square Matrix:

Definition of the Inverse of a Square Matrix
Let A be an $n \times n$ matrix. If there exists a matrix A^{-1} such that $A A^{-1}=I_{n}=A^{-1} A$

Inverse of a 2×2 Matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { then } \quad A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]= \\
& B=\left[\begin{array}{cc}
4 & -2 \\
3 & 1
\end{array}\right] \quad B^{-1}=[] \\
& C=\left[\begin{array}{cc}
1 & 4 \\
-1 & 3
\end{array}\right] \quad C^{-1}=\left[\quad D=\left[\begin{array}{cc}
3 & -1 \\
-6 & 2
\end{array}\right] \quad D^{-1}=[]\right.
\end{aligned}
$$

How do we find the inverse of a 3×3 ?

Inverse of a 3×3 Matrix:

$\left|\begin{array}{llllll}1 & 0 & 0 \vdots & 1 & 0 & 0 \\ 3 & 4 & 0 \vdots & 0 & 1 & 0 \\ 4 & 5 & 5 \vdots & 0 & 0 & 1\end{array}\right|$

Matrix Equation:

$4 x-2 y=6$
$2 x+3 y=-8$

$$
\rightarrow\left[\begin{array}{cc}
4 & -2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6 \\
-8
\end{array}\right]
$$

*Order will matter with matrices
1.) Find the inverse of the coefficient matrix
2.) Multiply by the inverse on both sides (*inverse goes first)
3.) Answer is an ordered pair.

Ex- Solve the following systems using a matrix equation:

1. $\left\{\begin{array}{l}2 x+4 y=10 \\ x-3 y=-5\end{array}\right.$
2. $\left\{\begin{array}{l}2 x-3 y+z=0 \\ x+y-2 z=5 \\ -2 x+2 y+4 z=2\end{array}\right.$

Area of a Triangle: $\mathrm{A}= \pm-\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ where the ${ }_{-}^{+}$is used to get positive area.

Ex - Find the area of the triangle Ex - Find the area of the triangle
$(1,-1)(4,3)(0,5)$
$(4,-2)(7,9)(1,-5)$
$A= \pm \frac{1}{2}\left|\begin{array}{ccc}1 & -1 & 1 \\ 4 & 3 & 1 \\ 0 & 5 & 1\end{array}\right|$

Test for Collinear Points: $\mathrm{A}=\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$
Ex: Determine whether $(-3,-5)(6,1)(10,2)$ are collinear.

Cramer's Rule:

$a x+b y=e \quad$ eliminate $y: \quad$ eliminate $\mathrm{x}:$
$c x+d y=f$
$x=\frac{d e-b f}{a d-b c}$
$y=\frac{a f-c e}{a d-b c}$
Notice: $\mathbf{a d}$ - bc $=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$

Ex- $2 x-3 y=9$

$$
x+5 y=-2
$$

$$
x=\frac{\left|\begin{array}{cc}
9 & -3 \\
-2 & 5
\end{array}\right|}{\left|\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right|}=\quad y=\frac{\left|\begin{array}{cc}
2 & 9 \\
1 & -2
\end{array}\right|}{\left|\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right|}=
$$

Ex- $\quad 2 \mathrm{x}-\mathrm{y}=8$ $4 x-2 y=16$

$$
\begin{array}{ll}
\text { Ex- } & x+y=5 \\
& 3 x-2 y=20
\end{array}
$$

$\mathrm{x}=$
$\mathrm{y}=$
Ex- $\quad 5 x-3 y=19$

$$
7 x+2 y=8
$$

Ex- $-x+y=5$
$2 x+4 y=38$

$$
\text { Cramer's } \quad \begin{aligned}
& 4 x+2 y-z=5 \\
& \\
& \\
& \\
& \\
& \\
& \\
& x-2 y+3 z=-11
\end{aligned}
$$

$x=\frac{\left|\begin{array}{ccc}5 & 2 & -1 \\ -11 & 1 & -5 \\ 6 & -2 & 3\end{array}\right|}{\left|\begin{array}{ccc}4 & 2 & -1 \\ 2 & 1 & -5 \\ 1 & -2 & 3\end{array}\right|}$
$y=\frac{\left|\begin{array}{ccc}4 & 5 & -1 \\ 2 & -11 & -5 \\ 1 & 6 & 3\end{array}\right|}{\left|\begin{array}{ccc}4 & 2 & -1 \\ 2 & 1 & -5 \\ 1 & -2 & 3\end{array}\right|}$
$z=\frac{\left|\begin{array}{ccc}4 & 2 & 5 \\ 2 & 1 & -11 \\ 1 & -2 & 6\end{array}\right|}{\left|\begin{array}{ccc}4 & 2 & -1 \\ 2 & 1 & -5 \\ 1 & -2 & 3\end{array}\right|}$

Solve for y :
Ex- $3 x-2 y+2 z=-2$

$$
\begin{aligned}
x-3 y+z & =-2 \\
2 x-y+4 z & =7
\end{aligned}
$$

Solve for c :
Ex- $a+2 b-c=-7$

$$
\begin{aligned}
& 2 a+3 b+2 c=-3 \\
& a-2 b-2 c=3
\end{aligned}
$$

Solve using matrices:

$$
\begin{array}{ll}
\text { Ex- } & x+y+z=1 \\
& 2 x-y=0 \\
& -3 x+z=0
\end{array}
$$

$$
\begin{aligned}
\text { Ex- } \quad a+2 c & =-5 \\
b-c & =6 \\
3 a+2 b & +c=3
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Ex }-\quad & 2 x-y+z=3 \\
& 3 x+2 y-4 z=23 \\
& x-3 y-2 z=14
\end{array}
$$

$$
\begin{array}{ll}
\text { Ex- } & x+2 y=8 \\
& 3 x-y+2=-1 \\
& -2 x+3 y-2 z=10
\end{array}
$$

Analysis of Network:

In a network, it is assumed that the total flow into a junction is equal to the total flow out of the junction. For instance, junction one has 20 units flowing in so
 $\mathrm{x}_{1}+\mathrm{x}_{2}=20$.

Set up a system of equations and solve for the unknown values.

Solve the matrix equation for X :

$$
\left[\begin{array}{cc}
7 & -2 \\
-4 & 1
\end{array}\right] X-\left[\begin{array}{cc}
3 & -5 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
-1 & 5 \\
2 & -3
\end{array}\right]
$$

